
AN INTERACTIVE PARSER GENERATOR FOR CONTEXT-FREE GRAMMARS

Gabriel J. Ferrer
Department of Mathematics and Computer Science
Hendrix College
Conway, AR 72032
(501) 450-3879
ferrer@hendrix.edu

ABSTRACT
 This paper describes a parser generator that accepts arbitrary context-free grammars. It
generates a parser using the Earley algorithm [1]. It enables the user to develop, edit, and test a
grammar in an interactive graphical environment. This GUI visualizes both the operation of the
Earley algorithm as well as the generated parse trees. The generated parsers are saved as
fully-functional Java source files, ready to be incorporated into an application. These Java
programs can be reloaded into the GUI for further editing of the grammar. Employing this parser
generator in a sophomore-level software development course enables students to become
proficient in writing a parser with two days of lecture and one assignment.

INTRODUCTION
 In our college's Computer Science program, students are expected to learn to process
text input using both regular expressions and parser generators. While regular expressions are
sufficient for many purposes, they suffer from two intrinsic problems: It is difficult to introduce
named abstractions, and it is not possible to represent recursive structures. For this reason, we
require our students to learn how to process text input using a parser generator.

 Parser generators are typically covered as part of a compiler construction course (e.g.
[10] [11]). However, the number of courses we can require for the Computer Science major is
constrained by Hendrix College's liberal arts curriculum; this makes it difficult for us to require
(or offer) a compiler-construction course. We instead cover parsing in a sophomore-level
programming course.

 To write a parser by hand for any but the simplest of input languages makes for a
tedious, highly bug-prone task, a task typically avoided in practice by using a parser generator.
But parser generators themselves are associated with a number of practical problems,
especially in the context of the limited time we have available for covering this topic:

1.In order to improve runtime efficiency, most parser generators (e.g., [3] [4] [5] [6]) accept
only a subset of context-free grammars.

2.The parsing algorithms (e.g., LALR parsers [2][11]) often require considerable study to
understand.

3.Many parser generators (e.g., [3] [4] [6]) require that input be preprocessed with a lexical
analyzer.

4.When developing a grammar, it is difficult to get immediate feedback on the changes, as
testing each alteration requires first generating a parser and running the compiler.

5.The API for interacting with the output of a parser generator is often intimidating, and
disproportionate to what is needed to build a working parser.

 In order to address these problems, we would like a parser generator to have the
following features:

1.Accept an unrestricted context-free grammar.
2.Accept regular expressions as terminal symbols.
3.Employ an algorithm readily comprehensible by a 2nd-year computer science student.

4.Allow the programmer to interact with the grammar without an explicit code-generation
step.

5.Provide an API that enables the programmer to write tree-walking code quickly and easily.
In addition, the API should allow the grammar to change with as few changes as
possible to the tree-walking code that depends upon it.

 Furthermore, given the widespread use of automated unit testing (e.g. JUnit), it would be
helpful for a parser generator to support automated unit testing as well.

 This led us to create our own parser generator, Grambler, to meet our requirements.
Grambler is an implementation of the Earley parsing algorithm. It allows the user to specify an
arbitrary context-free grammar, and it will generate a Java class that corresponds to that
grammar. The user may mix regular expressions into the context-free grammar as well, thus
seamlessly incorporating lexical analysis into the parser.

 Grambler also allows the user to interact with the grammar. Once a grammar is
specified, the user can enter text and request that it be parsed. The GUI will then display a
parse tree for the text using the grammar, and will also show the parse table generated by the
Earley algorithm. The user can also generate JUnit tests to verify that alterations to the
grammar preserve its ability to parse previously successful inputs.

 This paper is organized as follows. First, the Earley algorithm is summarized, and some
modifications we made to the algorithm are described. Next, each feature of the GUI is
described, with an emphasis on the pedagogical role of each feature. We then describe the API
for interacting with the parse trees that Grambler generates.

IMPLEMENTING THE EARLEY PARSING ALGORITHM
 The Earley algorithm is a dynamic-programming algorithm that builds a table of parses
of input prefixes. The algorithm terminates when the top-level production has matched the entire
input string. Each row of the table corresponds to one character position in the input string. (For
an input string of length n, the first row is row zero, and the final row is row n.) Each row
contains a list of every possible match between a production and the input string at that position.

 Each possible match is called a state. A state is defined by the following parameters:
●Input position where this match started (the origin position)
●Current input position (i.e., the current row)
●A production from the grammar
●Next candidate symbol from that production

 The algorithm starts by adding a state to row zero for each alternative of the top-level
production. The first symbol from the production will be the next candidate symbol, and both the
starting and current input positions will be zero. Then, for every state in every table row, a table
update is performed.

 The nature of a table update depends upon the type of the state. A state is complete if all
production symbols have been matched. A state is scanning if the next candidate production
symbol is a terminal symbol; if it is a non-terminal symbol, the state is predicting.

 If the state is predicting, it will add a new state to the same table row for every right-hand
alternative of the next candidate production symbol. If the state is scanning and the current
character is a match for the terminal symbol, it will add a new state to the next table row, with an

updated current-input position and an updated next-candidate symbol. If the state is complete, it
will loop through all states in its origin position; if the completed state's production is the next-
candidate symbol for an origin state, a new state derived from the origin state is inserted at the
current table row, with an updated next-candidate symbol.

 As our implementation of this algorithm permits both arbitrary-length fixed strings as well
as regular expressions as terminal symbols, it was necessary to modify the update for scanning
states. First, the length of the matching input substring is computed. This length is then added to
the current character position to determine the row into which the new state is to be placed.

 To demonstrate the input language for context-free grammars, Figure 1 gives as an
example the grammar for that input language. Grambler is self-hosting; it generated its own
parser.

Figure 1: Grammar for grammars

 Each production is structured as follows. The left-hand side symbol is followed by a
colon; alternatives are separated with a vertical line, and the production as a whole is
terminated by a semicolon. The left-hand side of the first production is the start symbol for the
grammar.

 The right-hand elements are separated by spaces. Elements without quotation marks
are nonterminals. Elements within single quotation marks are string literal terminals. Elements
within double quotation marks are regular expression terminals. The string literal within each
pair of double quotes is used to construct a java.util.regex.Pattern object for regular expression
matching.

GRAPHICAL USER INTERFACE
The Grambler GUI gives the user the following options:

●Create/edit a grammar
●Export/import a grammar to/from a Java file
●Create/edit a text input for the grammar to process
●Open/save a text input or grammar as a text file
●Export a text input as a JUnit test

○Check acceptance/rejection only
○Check matching parse tree

●Parse the current text input using the current grammar
○Determine whether the parse succeeded
○View the parse tree resulting from the parse
○View any Earley table row generated while parsing

Figure 2: Graphical User Interface

 Figure 2 shows a screenshot of the user interface. The user creates a grammar in the
upper-left area. The user then enters a text input to be parsed in the lower-left area. Once the
grammar and text input are ready, the user clicks the Parse button. The upper-right area shows
a parse tree. The lower-right area shows the table rows generated by the Earley algorithm.

 The parse tree is presented based on a preorder traversal (similar to the visualization
from [10]). Each row of the text output is a tree node. Each level of indentation indicates a level
of tree depth. The example above contains a tree with three levels and seven total nodes.

 The Earley chart is visualized one row at a time. The user can select a row directly, jump
to the start or end, or iterate among consecutive rows. As some rows may contain no states, the
Next and Previous buttons jump only between rows that do have states. Each state is described
by its production, a period (“.”) before the next candidate symbol, and the current and origin
input positions for the state. The purpose of this aspect of the GUI is to enable a user who is
puzzled as to why a parse is failing to inspect the chart to find out precisely how far into the
input the parser got. From there, the user can inspect the states to figure out which productions
were attempted, and from there infer which productions failed to advance.

 The File menu allows the user to export the grammar to a Java file that, when compiled
and executed, will parse the language the grammar specifies. The user can also import the
grammar from a Java file in the format it generates.

 The Unit Tests menu allows the user to generate two kinds of unit tests: acceptance
checks and tree checks. An acceptance check will generate a unit test that checks to see if the
error status of the generated tree is identical to the error status of parsing the current text input.

A tree check ensures that the generated tree is identical to that in view on the GUI. These unit
tests are appended to a JUnit-compatible file that is automatically generated, based on the
name of the Java file used for saving the grammar.

APPLICATION PROGRAMMER INTERFACE
 Once a grammar is complete, Grambler will generate Java code corresponding to it.
Specifically, it will generate a class that extends the Grammar class from the Grambler API.
Objects of the grammar class have a parse() method that takes a String parameter and returns
a Tree object corresponding to the concrete syntax tree for the input parameter. In the event of a
syntax error, a Tree object is still returned containing the error information.

A successful tree walk requires the ability to:
1.Determine the grammar label corresponding to each tree node;
2.Retrieve the children of each interior node; and
3.Reconstruct the original text input corresponding to a node.

To achieve these goals, the Tree class provides the following methods:
1.The getName() method returns the name of the left-hand side element corresponding to

this Tree node.
2.The hasNamed() method determines whether a child with a given name is present for this

tree Node. The getNamed() method retrieves the Tree object corresponding to a given
name. If more than one child shares the same name, an additional integer parameter
can be supplied to resolve the ambiguity.

3.The toString() method returns the input substring corresponding to this Tree object.

 Syntax errors are flagged by the isError() method. If a syntax error is present anywhere
within the tree, isError() will be true for all of the ancestor nodes of the error, including the root
node. The getErrorMessage() method returns a String giving the the line number of the error as
well as a prefix of the line that was successfully matched immediately prior to the error.

RELATED WORK
 The parser generator DParser [7] directly inspired the grammar syntax employed in
Grambler. While DParser addresses most of the problems with existing parser generators listed
in the introduction, is not suitable for our pedagogical goals for two reasons. First, being a
traditional command-line parser generator, it lacks the level of interactivity we require. Second,
the Earley algorithm was easier for us to conceptualize as an interactive visualization, in
comparison to the Tomita algorithm [9] DParser employs.

 In both VAST [12] and Tree-Viewer [10], syntax tree visualizations were created for
educational purposes. We prefer the text-oriented preorder-traversal approach from [10], as
nearly a full line of text is available for describing each node. In the graphical-box approach in
[12], much less information can be displayed for each node.

Grammar Editor [8] is an interactive editor for context-free grammars employing the CYK
algorithm. As with Grambler, a user enters a grammar and text to be parsed, and the program
will display a parse tree. It cannot, however, create a parser generator that can be incorporated
into a user program.

CONCLUSION
 The Grambler parser generator has been successful in simplifying the presentation of
parsing to students in a third-semester programming course. Every project in the class had a
working parser after two days of lecture and one assignment. We have been able to focus our
valuable course time on higher-level issues involved with incorporating parsers into computer
programs without being distracted by other issues such as obscure syntax and extended edit-
compile-test cycles.

Grambler is freely available for download from http://code.google.com/p/grambler/.

REFERENCES
[1] Earley, J., An efficient context-free parsing algorithm, Communications of the ACM, 13 (2):
94-102, 1970.
[2] Aho, A.V., Sethi, R., Ullman, J.D., Compilers: Principles, Techniques, and Tools, Addison-
Wesley, 1986.
[3] Parr, T., ANTLR, http://www.antlr.org/, retrieved 5/16/12.
[4] JavaCC, https://javacc.dev.java.net/, retrieved 5/16/12.
[5] Grimm, R., Rats!, http://cs.nyu.edu/rgrimm/xtc/rats-intro.html, retrieved 5/16/12.
[6] Gagnon, E., SableCC, http://sablecc.org/, retrieved 5/16/12.
[7] Plevyak, J., DParser, http://dparser.sourceforge.net/, retrieved 5/16/12.
[8] Burch, C., Grammar Editor, http://ozark.hendrix.edu/~burch/proj/grammar/, retrieved 5/16/12.
[9] Tomita, M., An efficient context-free parsing algorithm for natural languages, In Proceedings
of the International Joint Conference on Artificial Intelligence, pp. 756-764, 1985.
[10] Vegdahl, S., Using visualization tools to teach compiler design, Journal of Computing
Sciences in Colleges, 16 (2), January 2001.
[11] Demaille, A., Levillain, R., Perrot, B., A set of tools to teach compiler construction, In
Proceedings of ITiCSE-08, June 2008.
[12] Almeida-Martinez, F.J., Urguiza-Fuentes, J., Velazquez-Iturbide, J.A., VAST: Visualization of
Abstract Syntax Trees within language processors courses, In Proceedings of SoftVis '08,
September 2008.
[13] Wall, L., Apocalypse 5: Pattern Matching, http://perl6.org/archive/doc/design/apo/A05.html,
retrieved 7/31/12.

http://www.antlr.org/,
http://www.antlr.org/,
http://www.antlr.org/,
http://www.antlr.org/,
http://www.antlr.org/,
http://www.antlr.org/,
http://www.antlr.org/,
http://www.antlr.org/,
http://www.antlr.org/,
http://www.antlr.org/,
http://www.antlr.org/,
http://www.antlr.org/,
http://www.antlr.org/,
http://www.antlr.org/,
http://www.antlr.org/,
http://www.antlr.org/,
https://javacc.dev.java.net/,
https://javacc.dev.java.net/,
https://javacc.dev.java.net/,
https://javacc.dev.java.net/,
https://javacc.dev.java.net/,
https://javacc.dev.java.net/,
https://javacc.dev.java.net/,
https://javacc.dev.java.net/,
https://javacc.dev.java.net/,
https://javacc.dev.java.net/,
https://javacc.dev.java.net/,
https://javacc.dev.java.net/,
https://javacc.dev.java.net/,
https://javacc.dev.java.net/,
https://javacc.dev.java.net/,
https://javacc.dev.java.net/,
https://javacc.dev.java.net/,
https://javacc.dev.java.net/,
https://javacc.dev.java.net/,
https://javacc.dev.java.net/,
http://cs.nyu.edu/rgrimm/xtc/rats-intro.html,
http://cs.nyu.edu/rgrimm/xtc/rats-intro.html,
http://cs.nyu.edu/rgrimm/xtc/rats-intro.html,
http://cs.nyu.edu/rgrimm/xtc/rats-intro.html,
http://cs.nyu.edu/rgrimm/xtc/rats-intro.html,
http://cs.nyu.edu/rgrimm/xtc/rats-intro.html,
http://cs.nyu.edu/rgrimm/xtc/rats-intro.html,
http://cs.nyu.edu/rgrimm/xtc/rats-intro.html,
http://cs.nyu.edu/rgrimm/xtc/rats-intro.html,
http://cs.nyu.edu/rgrimm/xtc/rats-intro.html,
http://cs.nyu.edu/rgrimm/xtc/rats-intro.html,
http://cs.nyu.edu/rgrimm/xtc/rats-intro.html,
http://cs.nyu.edu/rgrimm/xtc/rats-intro.html,
http://cs.nyu.edu/rgrimm/xtc/rats-intro.html,
http://cs.nyu.edu/rgrimm/xtc/rats-intro.html,
http://cs.nyu.edu/rgrimm/xtc/rats-intro.html,
http://cs.nyu.edu/rgrimm/xtc/rats-intro.html,
http://cs.nyu.edu/rgrimm/xtc/rats-intro.html,
http://cs.nyu.edu/rgrimm/xtc/rats-intro.html,
http://cs.nyu.edu/rgrimm/xtc/rats-intro.html,
http://cs.nyu.edu/rgrimm/xtc/rats-intro.html,
http://cs.nyu.edu/rgrimm/xtc/rats-intro.html,
http://cs.nyu.edu/rgrimm/xtc/rats-intro.html,
http://cs.nyu.edu/rgrimm/xtc/rats-intro.html,
http://cs.nyu.edu/rgrimm/xtc/rats-intro.html,
http://cs.nyu.edu/rgrimm/xtc/rats-intro.html,
http://cs.nyu.edu/rgrimm/xtc/rats-intro.html,
http://cs.nyu.edu/rgrimm/xtc/rats-intro.html,
http://cs.nyu.edu/rgrimm/xtc/rats-intro.html,
http://cs.nyu.edu/rgrimm/xtc/rats-intro.html,
http://cs.nyu.edu/rgrimm/xtc/rats-intro.html,
http://cs.nyu.edu/rgrimm/xtc/rats-intro.html,
http://cs.nyu.edu/rgrimm/xtc/rats-intro.html,
http://cs.nyu.edu/rgrimm/xtc/rats-intro.html,
http://cs.nyu.edu/rgrimm/xtc/rats-intro.html,
http://cs.nyu.edu/rgrimm/xtc/rats-intro.html,
http://sablecc.org/,
http://sablecc.org/,
http://sablecc.org/,
http://sablecc.org/,
http://sablecc.org/,
http://sablecc.org/,
http://sablecc.org/,
http://sablecc.org/,
http://sablecc.org/,
http://sablecc.org/,
http://sablecc.org/,
http://sablecc.org/,
http://dparser.sourceforge.net/,
http://dparser.sourceforge.net/,
http://dparser.sourceforge.net/,
http://dparser.sourceforge.net/,
http://dparser.sourceforge.net/,
http://dparser.sourceforge.net/,
http://dparser.sourceforge.net/,
http://dparser.sourceforge.net/,
http://dparser.sourceforge.net/,
http://dparser.sourceforge.net/,
http://dparser.sourceforge.net/,
http://dparser.sourceforge.net/,
http://dparser.sourceforge.net/,
http://dparser.sourceforge.net/,
http://dparser.sourceforge.net/,
http://dparser.sourceforge.net/,
http://ozark.hendrix.edu/~burch/proj/grammar/,
http://ozark.hendrix.edu/~burch/proj/grammar/,
http://ozark.hendrix.edu/~burch/proj/grammar/,
http://ozark.hendrix.edu/~burch/proj/grammar/,
http://ozark.hendrix.edu/~burch/proj/grammar/,
http://ozark.hendrix.edu/~burch/proj/grammar/,
http://ozark.hendrix.edu/~burch/proj/grammar/,
http://ozark.hendrix.edu/~burch/proj/grammar/,
http://ozark.hendrix.edu/~burch/proj/grammar/,
http://ozark.hendrix.edu/~burch/proj/grammar/,
http://ozark.hendrix.edu/~burch/proj/grammar/,
http://ozark.hendrix.edu/~burch/proj/grammar/,
http://ozark.hendrix.edu/~burch/proj/grammar/,
http://ozark.hendrix.edu/~burch/proj/grammar/,
http://ozark.hendrix.edu/~burch/proj/grammar/,
http://ozark.hendrix.edu/~burch/proj/grammar/,
http://ozark.hendrix.edu/~burch/proj/grammar/,
http://ozark.hendrix.edu/~burch/proj/grammar/,
http://ozark.hendrix.edu/~burch/proj/grammar/,
http://ozark.hendrix.edu/~burch/proj/grammar/,
http://ozark.hendrix.edu/~burch/proj/grammar/,
http://ozark.hendrix.edu/~burch/proj/grammar/,
http://ozark.hendrix.edu/~burch/proj/grammar/,
http://ozark.hendrix.edu/~burch/proj/grammar/,
http://ozark.hendrix.edu/~burch/proj/grammar/,
http://ozark.hendrix.edu/~burch/proj/grammar/,
http://ozark.hendrix.edu/~burch/proj/grammar/,
http://ozark.hendrix.edu/~burch/proj/grammar/,

