
1.  Abstract
 The situated control component of most autonomous agents has

traditionally been either a planner or reactive system. However,
there is general agreement that planning and reaction represent two
ends of a spectrum. These action selection methods differ in,
among other things, their treatment of representation. Planners per-
form projection on an internal world model, while pure reactive
systems store no internal representation, using “the world as its
own model”. We seek to move situated controllers, or perception/
action systems, toward the middle of this spectrum.

 We have developed a perception/action (PA) system which
incorporates task dependent representations. These representations
do not constitute the full world model of classical planners, but
they do provide action selection information beyond the current
sensory data used by reactive systems. We will show that our rep-
resentations are compact and maintainable and that they make our
PA system more effective than a stateless reactive system. We will
also discuss the implications a PA system using such representa-
tion has on the rest of an agent’s architecture. The discussion will
be carried out in the context of an application involving both
planned and dynamic components.

2.  INTRODUCTION
Most researchers would agree that a purely stateless au-

tonomous agent is a strawman, yet there is little agreement
about what should be represented and how that representa-
tion should be organized or accessed. We are interested in
using representation at the perception/action layer (various-
ly called the “skill layer” [5][3], or the “controller” [6]), of
an agent architecture; that is, the layer where perception and
action are most closely linked. We have developed a system
of representation which can be used effectively by an
agent’s PA layer. In the next section, we will discuss the
uses of representation in a PA layer. Then we will develop
an organizational structure for our representation as well as
an access method. We will then address the issues of repre-
sentation maintenance and performance in the context of a
task performed by our robot, Bruce. Finally, we will explore
the impact that representation at the PA layer has on the oth-
er layers of our three-level architecture.

3.  REPRESENTATION
Why have representation in a perception/action sys-

tem? It can serve two inter-related purposes. First, represen-
tation can greatly facilitate some tasks by storing
information which cannot be currently gathered from sen-
sors. Consider the following example: you are driving your
car and you come to an intersection. To make a left turn,

you must determine if the cross street is clear in both direc-
tions. While it may be possible to create a reactive system
which can make this determination by rapidly redirecting
its sensors, it is more practical to have a representation for
the-direction-I-just-looked-is-clear.

Now consider making a left turn in a different situa-
tion. You look right and see the way is clear, then you look
left and see that direction is also clear. When you look back
to the right, you see that a truck has pulled up next to you
and your view is blocked. An agent with representation can
remember that the way was clear (for some interval), but a
pure reactive agent cannot.

Suppose instead that you look left and see that the way
is clear, then you look right and see a car coming. Now the
truck pulls up next to you in the right lane and blocks your
view of the oncoming car. You need to remember that the
car was there so that you don’t pull out. Since the truck
occludes the car, a reactive system (without x-ray vision)
cannot use the knowledge of the car’s presence in its action
selection. In both of these cases, the safest strategy for a
reactive agent is to wait for the truck to leave, just in case it
was occluding any cars. However, this limits the agent to
act only when it can gather all information necessary to
select an action at the current instant in time. An agent with
representation can act correctly in this situation (within
some time frame) if it remembers whether there was a car
coming before the truck arrived. A system with representa-
tion can act with limited extent sensors and in the presence
of occlusion.

Representation can also serve as the basis for active per-
ception. It can describe what to look for and where to look.
Segmentation and recognition are more difficult without a
priori knowledge. Our PA layer’s representation describes a
limited collection of task-dependent object’s which an agent
expects to find in its sensory field. In addition, representa-
tion provides information about where an agent should di-
rect its perception. For example, a quarterback agent will not
be able to simultaneously perceive all his receivers, but he
can use his knowledge of their positions (based either on re-
cent sightings or an understanding of their intended routes)
to check each one and decide who is open.

4.  THE EFFECTIVE FIELD OF VIEW
This section describes the overall organization of repre-

sentation in our PA layer, as well as the specific structures
of which it consists. We address how representation is ac-
cessed during the process of action selection.
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Our PA layer selects actions based on information in its
effective field of view (EFOV). We define the absolute field
of view of a sensor as the area in which it can reliably extract
information about the environment at any one time1. The ef-
fective field of view includes the absolute field of view as
well as the location and identity of recently perceived ob-
jects which are important to the agent’s task. For example,
in the previous quarterback example, the quarterback’s ab-
solute field of view may contain only the receiver streaking
toward the end-zone, while his effective field of view may
contain that information as well as the expected position of
the linebacker he saw blitzing from the left side.

It is important to note that his effective field of view does
not contain the location of the coach, the fans or any players
on the sidelines because their positions are unimportant for
the complete-the-pass task. Note also that the priorities of
the task: completing the pass above personal safety, dictate
that the most reliable information, i.e. the most recently
sensed data, be maintained about the receiver. Thus the ab-
solute field of view tracks the receiver while the positions of
blitzing linemen are extrapolated from where they were last
seen.

Since the effective field of view contains information out-
side of the absolute field of view, we must begin to ask the
question, what should be represented? This is a broad ques-
tion with a range of semantic meanings for ‘what’. Since we
are interested in a PA layer that must rapidly interact with its
environment, we have defined, for our representation, sim-
ple, task-dependent structures called markers.

4.1  Markers
The unit of representation in our system is the marker.

Each marker corresponds to an object that the PA layer be-
lieves to be important to its current task. Ullman [12] uses
the term “marking” to refer to remembering a location for
later reference. He supposes the creation of a “marking
map” that holds context dependent locations, in the visual
field, that have been analyzed. Attneave and Farrar [2] sug-
gest that locations outside the visual field can be marked.
Pylyshyn describes a similar concept in his FINST model
[8]. He describes a limited number of “reference tokens”
which can be bound to visual features. This binding is a pre-
requisite to determining relational properties about those
features. Agre and Chapman [1] use markers in their Pengi
system to identify objects relevant to the penguin’s current
task, e.g. the-ice-block-blocking-my-escape. While Agre
and Chapman used an overhead perspective and directly ac-
cessed the game’s data structures, Brill considers issues in-
volved in using markers with early vision in dynamic, 3D,
1st person domains involving occlusion [4].

1. We speak of fields of “view” because we are primarily interested
in visual agents and we will concentrate on them throughout the
rest of this paper. However, the arguments apply to any limited
range sensor.

Markers are generally considered to denote the what and
the where for important objects. The what of a marker de-
scribes the object’s role in the current task. For example, a
screwdriver may be marked as such for the task of tightening
a screw, but may be marked as a pry-bar for the task of open-
ing a stuck window. These two tasks require different roles
to be filled, yet the agent can mark the same object for both.
Selecting an object with the appropriate characteristics is a
function of the marker’s identification routines (discussed
below). A marker’s where component specifies the loca-
tion of the marked object in an ego-centric coordinate sys-
tem.

In addition to what and where, our markers contain two
additional components: identity and action. Markers
have primitive tracking capabilities and their identity
routines are used to maintain the location of their associated
objects. Identity is divided into two not necessarily dis-
tinct routines, locate and track. While track is con-
cerned with the frame-to-frame identification of the marked
object, locate is used to initially detect the object (or pos-
sibly to relocate the object if it is lost by track).

Markers may be in one of two states: instantiated and un-
instantiated. An instantiated marker is one that the PA layer
has associated with a specific object. These objects are
tracked from frame to frame via the track routines of their
associated markers. Uninstantiated markers represent the
expectations of the agent’s “higher” layers, i.e. what to ex-
pect and where to expect it. The PA layer attempts to asso-
ciate an uninstantiated marker with an object in the absolute
field of view using the marker’s locate routine.

Action specifies what the agent wishes to do with the
marked object. Actions specify goals to the PA layer. For
example, a chair marker with a goto action would cause the
agent to approach the particular chair designated by the
marker’s what/where components. Each action speci-
fies a number of parallel routines which the PA layer exe-
cutes to achieve the desired overall behavior. The exact
actions that are available will depend on the types of roles
within the current task, and the capabilities of the agent.

The components of markers are kept minimal so that they
may be maintained more robustly. However, as we will see,
markers provide just the information required for a great va-
riety of tasks that the PA layer executes. “Higher level”
knowledge is maintained by higher layers of the agent archi-
tecture.

Access to the PA layer’s representation means examining
the what and where components of markers in the agent’s
effective field of view. Our PA layer selects actions based on
information contained in its effective field of view, i.e. its
current sensor values and the information stored in its mark-
ers. The underlying PA layer keeps the markers up-to-date
so that actions are based on current information.

4.2  The Effective Field Of View In Practice
So far we have developed the concept of the effective



field of view as a system of representation for a PA layer.
We will now describe an implemented agent performing a
series of tasks to play a game of tag. This application allows
us to discuss important issues such as maintenance of repre-
sentation, assessment of performance and behavioral de-
scriptions.

4.3  Tag: An Application
Our application is a two player game of tag. One player is

“it” and must touch the other player, before that other player
reaches a designated location called the home base. In our
game, our autonomous agent, Bruce, is “it”, while a human
controlled vehicle (the truck) is the other player. Bruce be-
gins the game with no knowledge of the truck’s location.
Bruce conducts a systematic search of his environment for
his opponent, and attempts to touch (“tag”) it upon discov-
ery. The human controlled player is not allowed to “run for
home” until Bruce has spotted it and begun a chase.

Bruce is an 68HC11-based agent possessing tactile and
visual sensors. A single color camera is mounted on a pan/
tilt platform on the agent’s front and there are optical encod-
ers on its wheels. Offboard processing is facilitated by video
and data link transmitters.

4.4  Representation Maintenance
The primary reason that many agents are designed with no

representation at the perception/action level is because of
the difficulty of accurately maintaining that representation.
“Stale” information leads to the selection of incorrect ac-
tions. The PA layer is not concerned with the “truth mainte-
nance” of the sort of high-level predicates used by inference
engines; rather it must keep the where components of its
markers up-to-date (maintenance of the what component is
discussed in [4]).

Since the effective field of view is used to select the
agent’s immediate actions, the agent must both execute its
actions and update its markers in parallel. Consider the
chase behavior which is initiated when Bruce detects his op-
ponent. Chase consists of two parallel activities (termed PA
processes). The first directs Bruce’s pan/tilt unit, or “neck”,
to point the camera at his opponent. The second controls the
wheels to move Bruce toward his opponent in order to com-
plete a “tag”. These PA processes consult the chase-target
marker (which has its identity component set to truck)
to determine where to direct the effectors under their con-
trol, so it is important that the representation be maintained
effectively.

In our PA layer, the effective field of view is maintained
by keeping the positions of all marked objects up-to-date. A
marker’s estimated position, in ego-centric polar coordi-
nates, is calculated through a “hypothesis and confirm (if
possible)” process. The hypothesis is created from the pre-
viously stored position and proprioceptive data, e.g. the
most recent values read from the agent’s drive shaft encod-
ers. If the hypothesized position should be visible in the cur-
rent absolute field of view, the agent looks for a

correspondent in the current image. If a correspondent can
be found, the object’s position (based on its azimuth and el-
evation in the image with the assumption that all objects lie
on the ground) is stored instead of its expected location. If
the hypothesized position should not be visible, or no corre-
spondent is found, then that hypothesis becomes the current
position.

Visual correspondence is done by finding the ground/
non-ground boundary, or groundline [7]. Vertical disconti-
nuities in this line represent the edges of objects (see figure
1). Each segmented image region is analyzed by each mark-
er’s track routine (example routines include histogram in-
tersection [10]). Matching of markers to objects is based on
results of the match determined by track and the distance
between this object’s position and the position stored in the
marker.

Now we can see one of the benefits of the effective field
of view. The location of the truck may be computed from
sensor data (when the truck is in the absolute field of view)
or based on proprioceptive data (such as when the truck is at
an azimuth not visible at the current camera angle or is oc-
cluded), but the PA processes operate the same in both situ-
ations. In this manner, the effective field of view provides a
uniform access mechanism to all the information important
to the agent’s current task.

5.  PA LAYER IN A COMPLETE AGENT
Many complex tasks, such as playing a game of tag, re-

quire more deliberative capabilities than we consider to be
part of the PA layer. Many autonomous agent architectures,
[3][5][6], have several layers operating at different “levels”
of abstraction. Bruce’s architecture also has three layers
[13]. For this application, the architecture has a specialized
planner (DL) at the highest layer, and the previously de-
scribed PA layer at the lowest. In between is a management
layer called the task executor (TE). In the following section
we discuss how PA layer representation can be used by the
TE. In particular, we address how the TE assists in playing
the game of tag. Finally we discuss issues involved in the de-
sign of the TE and the DL to work with our PA layer.

5.1  Information Flow
A PA layer’s representation provides the other layers with

a means of specifying goals and a mechanism for receiving

Figure 1.  The Groundline and the Agent’s Opponent



task-dependent, semantic knowledge about the world.

Consider the search task that is part of the tag game. Ini-
tially, Bruce does not know the location of his opponent and
so must systematically search his environment. Bruce pos-
sesses a map of his environment from which the planner
generates a search route (see figure 2) such that all of the
game area will fall within the absolute field of view at some
point [11]. However, the map’s “global” coordinate system
is fundamentally different than the local-space representa-
tion of markers. The agent’s position in this global coordi-
nate system is the type of information which the PA layer
cannot effectively maintain. Thus, we need a means for the
planner to communicate its goals to the PA layer in a manner
suitable for effective action.

Figure 2 shows a plan to search the game area. The solid
lines represent paths to travel, while the dashed lines repre-
sent points where the agent must turn its camera in the direc-
tion indicated by the arrow. The agent is shown as a shaded
pentagon with the point indicating its direction of motion.
The cone indicates the agent’s absolute field of view.

Figure 3a shows Bruce in the same position as the agent
indicated in figure 2; near completion of step 3. In figure 3,
the white lines extending from the agent’s camera denote its
absolute field of view. Solid arrows indicate objects associ-
ated with instantiated markers, while dashed arrows indicate
locations at which the TE expects to find a specific object
that can be associated with an uninstantiated marker. When
Bruce completes step 3, he must go toward the object la-
beled b3 which is outside of his current absolute field of
view. The TE directs the PA layer to do this by placing an
uninstantiated destination marker with identity b3 (and a
goto action) into the PA layer’s effective field of view. This
is shown by the dashed arrow in figure 3b.

As Bruce begins to execute the goto action of the current
destination marker, as in figure 3c, the only information
about b3’s position is that provided by the TE. The floating
arrows in figures 3b and 3c show the general position indi-
cated by the marker. When proprioceptive data indicates
that the object on which Bruce would like to instantiate the
marker should be within the current absolute field of view,
the PA layer executes that marker’s Locate routine to
identify the object. If b3 is detected, the position in the

marker is replaced by the newly detected position and the
marker is said to be instantiated. This is shown in figure 3d.
Now the object associated (b3)with the destination marker
can be tracked. It is important to note that this behavior
would be difficult for a stateless system because in the situ-
ation shown in figure 3b, there is no sensory information
available to Bruce telling him the way to b3. The effective
field of view allows the PA layer to use information that has
not been acquired by the agent’s sensors.

At the start of a round of tag, the PA layer is given an un-
instantiated chase-target marker whose identity is truck.
This marker contains no estimate of the truck’s position, so
the PA layer will try to instantiate the marker on any object
matching the truck’s sensory characteristics. The TE moni-
tors the PA layer’s effective field of view to see if the chase-
target marker becomes instantiated. If so, the TE will stop
the current PA layer action (by deleting the associated mark-
er) and will alter the chase-target marker’s action com-
ponent to chase. Playing tag then involves the above TE/PA
layer interaction directing the agent to follow each “leg” of
the exploration route provided by the planning layer. As an
action completes, the associated marker may be dropped. In
figure 3a, there is a destination marker for b5, but in figure
3b (after goto destination has been completed) that marker
has been dropped because it is no longer important to the
agent’s current task of going to b3.

5.2  Design Of Other Layers
We have described Bruce’s three layered architecture as

having a planner, a middle-manager and a PA layer using
our effective field of view paradigm. This type of division is
common among agent architectures today. However, repre-
sentation at the PA layer provides new issues to be consid-
ered in the design of the other layers.
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For example, the TE needs to bridge the gap between the
knowledge used by the planner and the ego-centric, task-de-
pendent representations of markers. For the search task of
the tag application, the TE must compute ego-centric coor-
dinates for the markers based on the map, knowledge of the
agent’s starting position and the where components of pre-
vious markers when their associated goto actions complet-
ed.

Planners need to create plans that take into account agent
capabilities. The physical size and mechanics of our agent
place limits on the range over which purely proprioceptive
data can be accurately computed. Thus an uninstantiated
marker which indicates its associated object to be outside of
this range will likely not be effective for the goto task.

6.  RELATED WORK
There are a number of autonomous agent architectures

[3][5][6] utilizing multiple layers of activity. Their lowest
layer, often analogous to our PA layer, is a collection of in-
dependent behavior processes which communicate with
each other and the upper layers through some channels [6]
or shared memory [5].

Designing these behaviors is mostly an art. While this pa-
per does not alleviate the difficulties of behavioral design, it
does seek to say something about the communication be-
tween behaviors and the non-PA layers of an agent’s archi-
tecture. Work such as [6] and [5] allows communication to
be unstructured and arbitrary. We have defined a more struc-
tured communication mechanism via the passing of markers
associated with task-dependent roles. We believe that this
interface allows the effective exchange of important infor-
mation between behaviors or between behaviors and the up-
per layers of an architecture. This gives the upper layers a
useful and straightforward paradigm for instructing the PA
layer without over-constraining its options.

Spector’s supervenience model [9] consists of a set of
communicating levels in which lower levels pass facts about
the world to higher levels while higher levels pass goals
down to lower levels. Each level in the supervenience archi-
tecture contains a knowledge base accessible as a black-
board system. Uniform knowledge structures are used at
each level. We have presented a knowledge structure, the
marker, for use by a PA layer. We believe that the types of
knowledge structures needed to perform the tasks required
of higher levels are different than those that are usable by a
PA layer in a dynamic environment. These “higher level”
structures may contain more information than can be effec-
tively maintained by a PA layer. It is important to design the
knowledge structures of the PA layer carefully so that the
advantages of the knowledge are obtained while real-time
performance remains robust.

7.  CONCLUSIONS
We have developed a situated controller which incorpo-

rates task dependent representations. This perception/action

layer comprises a stateless reactive system with a limited
amount of task-dependent representation.

We have developed an organizational structure for repre-
sentation at the PA layer (markers) and described an access
mechanism for that information (the effective field of view).
These representations are compact, maintainable, and en-
able the PA layer to perform some task more effectively than
a stateless system. Finally we discussed a complete agent ar-
chitecture using a PA layer in the context of the tag task.
Marker based representations allowed our agent’s plans to
be communicated to its PA layer. We have demonstrated the
utility and effectiveness of this approach on a physical robot
performing a non-trivial real world task containing both dy-
namic and statically planned components.

Representation has long been the subject of debate in the
research community. We have created an agent which can
use representation both efficiently and effectively in the
lowest layer of its software architecture. We believe this
constitutes an important step toward the integration of dy-
namic actions and cognitive activities.
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