
Real-Time Imitation Learning of
Visual Behavior by a Mobile Robot

Gabriel J. Ferrer, Eric Huynh
Department of Mathematics and Computer Science

Hendrix College
1600 Washington Avenue

Conway, AR 72032
{ferrer — huynhem}@hendrix.edu

Abstract

We describe a system for a human to train a webcam-
equipped mobile robot by remote piloting. This robot learns
to imitate the actions selected by the human. To make robotic
imitation learning practical, each iteration of training (or clas-
sification) must complete quickly enough for the robot to act
in a timely manner. Furthermore, it must be possible to in-
terleave episodes of training and autonomous execution, so
that the human pilot may correct behavioral problems with
the robot as they are observed. To address these issues, we
introduce a learning algorithm that executes in constant time
and space relative to the number of labeled training samples.
This system has enabled successful imitation learning of an
obstacle avoidance behavior on a physical mobile robot.

Overview

We are developing a system to enable real-time imitation
learning of visual behavior by a mobile robot. By “visual be-
havior”, we mean that the robot has a defined action to per-
form in response to each input image. By “imitation learn-
ing”, we mean that our goal is for the robot to learn to imitate
the actions specified by a human pilot in a given situation.
By “real-time”, we require the learning algorithm to update
itself in a constant amount of time for each labeled training
input. We also require the algorithm to produce an action in
a constant-bounded amount of time for each unlabeled input.

We have two additional goals for our system. First, the hu-
man pilot ought to have the opportunity to supply additional
training when the robot makes a poor action selection. Sec-
ond, we would like to have available a single hyperparame-
ter that, when it increases in value, increases learning qual-
ity while decreasing the frame rate (i.e., images processed
per second), and conversely, when it decreases in value, de-
creases learning quality while increasing the frame rate.

Our current implementation (inspired by clustering ap-
proaches such as kNN (Peterson 2009) and the self-
organizing map (Kohonen and Honkela 2007)) has all of
these capabilities, and we have deployed it on a physical mo-
bile robot. We tested the complete imitation learning system
with 16 volunteers on a visual obstacle-avoidance task, 12
of whom agreed that they were able to effectively teach the
robot to imitate their performance on the task. We further

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

support this finding with quantitative observations that show
how closely the learned behavior matched the behavior mod-
eled by the teacher.

Related Work

Robot imitation learning has been extensively studied; (Ar-
gall et al. 2009) give a comprehensive overview of this topic.
In this section, we discuss some specific examples that op-
erate in real-time.

(Pomerleau 1991) programmed a self-driving car that
used a backpropagated neural network to learn to steer by
imitating a human driver. Backpropagation requires signif-
icant adaptation to be suitable for use as a real-time learn-
ing algorithm. Their solution was to maintain a rotating set
of 200 training images. As each new labeled image arrives,
14 variations are created, and the 15 new images replace 15
old images with similar training labels. The network is then
trained via backpropagation 50 times using this set.

While this yields a successful real-time imitation learn-
ing system, its interrelated hyperparameters are difficult to
configure. The quality of the learned result depends upon
the number of training images maintained, the number of
trainings on each image, the number of hidden nodes, and
the learning rate. The first three items also affect the run-
ning time. Because of the possibility of overtraining the net-
work, increasing the number of hidden nodes or the number
of training images might decrease the quality of the learned
behavior while also decreasing the frame rate. Due to this
problem in addition to the sheer complexity of four inde-
pendently varying and interacting hyperparameters, it can be
difficult to optimize their values to get the desired trade-off
between learning quality and frame rate.

(Sullivan and Luke 2012) describes robots that are con-
trolled using a hierarchical finite-state automaton. Each state
defines a behavior, performed as long as the agent is in that
state. Transitions are controlled by functions that map the
current state and a preprocessed feature vector to a new
state. These functions are learned from human demonstra-
tion, using a decision-tree approach. They classify imitation-
learning systems into those that learn plans and those that
learn policies. As they put it, “...the plan literature builds
sparse machines describing occasional changes in behavior,
whereas ... policy methods learn fine-grained changes in ac-
tion, such as might be found in trajectory planning or con-

Proceedings of the Thirtieth International Florida Artificial Intelligence Research Society Conference

44



trol. ... Our work lies in the plan method category.”
In contrast, the focus of our present work is to learn a

policy rather than a plan. We wish for the robot to learn
a response for each new image frame that it receives, sev-
eral times per second. An additional contrast is that both the
goals and the algorithm used by (Sullivan and Luke 2012)
requires significant feature preprocessing to create a sym-
bolic input representation. This latter task is part of the work
of the machine learning system in our formulation.

A representative example of a policy-based system is that
of (Coates, Abbeel, and Ng 2008), in which a human expert
pilots a remote-controlled helicopter multiple times through
a target trajectory. Their work shows how to learn a complex
trajectory given relatively simple sensor inputs. Our work in
this paper shows how to learn a relatively simple trajectory
given complex sensor inputs. The differences in the under-
lying data structures employed reflects this.

(Ontanon, Montana, and Gonzalez 2014) classify imita-
tion learning tasks into multiple levels depending upon the
complexity of the behavior to be learned. The task our robot
learned in this study is Level 2 - Reactive Behavior, be-
cause the action selected depends only upon the current ob-
servation. Their analysis justifies our decision to use a su-
pervised learning algorithm, given that supervised learning
algorithms are sufficient to learn any behavior at Level 2.

(Horswill 1994) created a robot that was carefully engi-
neered to base its behaviors on specific visual cues from its
target environment. The present work aims to enable a hu-
man to engineer a robot’s behaviors for a specific environ-
ment via imitation learning rather than by programming.

Applications of clustering in robotics include a combina-
tion of the Self-Organizing Map with Q-Learning (Touzet
1997) (Smith 2002), a SOM system for behavior specifica-
tion (Touzet 2006), and systems based on Growing Neural
Gas (GNG) (Provost, Kuipers, and Miikkulainen 2006) (Fer-
rer 2014). This work is motivated in part by the observation
that, because the number of clusters varies, a GNG-based
system can violate real-time constraints.

Our algorithm can be viewed as an adaptive variant of
kNN (Peterson 2009). Because kNN examines every train-
ing sample to classify each unlabeled input, it is not possible
to bound the time it needs by a constant. A key goal of ours
is to preserve the classification accuracy of kNN while intro-
ducing a constant time bound to enable real-time processing.

Unsupervised Clustering

To implement real-time imitation learning, we have built a
supervised learning algorithm on top of the unsupervised
learner Bounded Self-Organizing Clusters (BSOC) (Ferrer
2016) (see Figure 1). A BSOC is a complete undirected
weighted graph. Each node is a reference input for a cluster
(comparable to the nodes in a Self-Organizing Map (Koho-
nen and Honkela 2007)). In our case, these reference inputs
are webcam images. Each edge weight denotes the distance
between the reference inputs of the clusters. The total num-
ber of nodes and edges in the graph is fixed at initialization.
This is the key to enabling real-time learning; the total time
necessary for training or retrieving depends on the number

of nodes in the graph. By specifying that number of nodes
as a constant, the processing time can be given a specific
real-time bound.

The BSOC nodes are stored in a fixed-size array. Each
training input is added to the array as a reference input. If
adding the training input would cause the number of nodes
to exceed the maximum, the two nodes in the graph with the
shortest edge are merged by computing a weighted average
of their numerical representations. The training input is then
added to the newly available location in the array.

Each node also contains a counter that denotes the number
of inputs that contributed to the current node. These counters
are used as weights when merging nodes. In addition, each
edge weight (i.e., the distance between the reference inputs
of the connected nodes) is multiplied by the larger of the two
counters for the connected nodes.

The edges are stored in a red-black tree. They are primar-
ily ordered by their distances, and secondarily ordered by the
indices of their node endpoints. This enables us to quickly
find the smallest edge when needed in the train method.
When two nodes are merged (and removed from the main
graph), their edges are also removed from the red-black tree.

Let M be the maximum number of nodes for a BSOC.
Each call to lookup or insert makes no more than M
calls to the distance function. Each call to insert performs
up to M logM2 = 2M logM numerical comparisons when
inserting an edge connecting the input to each of up to M
existing nodes. Each call to train makes up to two calls to
insert, along with a comparison and 2M edge removals
(each requiring 2 logM comparisons in a red-black tree).
Given that M can be fixed as a constant, we can say that
each call to train or lookup takes constant time.

Building a Supervised Learner

The robot can perform one action at a time from a fixed num-
ber of options: FORWARD, LEFT, and RIGHT. Each node
in the BSOC has an associated histogram. After each call to
train(), a call to lookup() is performed to determine
the node in the BSOC that most closely corresponds to the
training input. The move associated with the training input
has its count increased by 1 in the histogram for that node.
When the BSOC algorithm merges nodes, the corresponding
histogram counts of the source nodes are added together to
provide a histogram for the newly merged node.

When an unlabeled image is supplied, a call to
lookup() again yields the node with the reference image
that is closest to that input. The move with the highest count
is the action the robot will select for the unlabeled image.

Hardware and Software

We deployed this system on a Lego Mindstorms EV3 mo-
bile robot using a webcam via its USB 1.1 port, by which
it receives 14 images per second at a resolution of 160x120.
We subsampled the images by a factor of 4, so the image
input size for our algorithm is 40x30. The implementation is
in Java, using the LeJOS library. The human pilot controls
the robot using an Android mobile device.

45



setup(max-nodes)
edges = new red-black-tree
nodes = array of inputs

lookup(input)
for each node

find distance from input to node
return (node-index, distance) of

closest node

train(input)
insert(input, 1)
if number of nodes exceeds max-nodes

edge = edges.remove(smallest edge)
(n1, n2) = endpoints of edge
Remove n1 and n2 and their edges
insert(merged(n1,n2),

n1.count + n2.count)

insert(image, count)
add (image, count) to nodes
for each existing node n

d = distance from image to n
Create and insert a new edge:
- First vertex is image
- Second vertex is n
- Weight is d * max(count(image),

count(n))

merged(n1, n2)
w1 = n1.count / (n1.count + n2.count)
w2 = n2.count / (n1.count + n2.count)
img = w1 * n1.image + w2 * n2.image
return img

Figure 1: Pseudocode for BSOC

When driving forward, the robot moves at a rate of 16
cm/s. It turns by rotating one wheel backward and keeping
the other wheel stationary, at 1

4 the velocity employed when
driving forward. In this configuration, the robot turns at a
rate of about 18.5 degrees per second, requiring about 19.5
seconds to make a complete rotation.

Experimental Evaluation

Overview

We conducted three rounds of experiments to assess the abil-
ity of our algorithm and system to learn to imitate a modeled
behavior. In the first round, we recorded a series of 700-
frame movies from the robot in different environments. We
then performed off-line training to benchmark our perfor-
mance against an implementation of k-nearest-neighbors.

In the second round, the robot attempted to train it-
self to avoid obstacles. We programmed a simple obstacle-
avoidance controller that used a sonar and bump sensors to
determine its actions. We then assessed the degree to which
our imitation learner learned that same behavior with images

as its input. The goal of this round of experiments was to as-
sess the impact of varying the number of BSOC nodes on
the cycle time and the quality of learning that took place.

In our third round of experiments, 16 human subjects
trained the robot in an obstacle-avoidance behavior using a
remote control. We then assessed how well the robot imi-
tated the behavior that the human demonstrated. The goal of
this round of experiments was to assess the degree to which
the robot could imitate a human behavior.

All 16 participants were undergraduate students at our in-
stitution. Three of the students had completed two or more
computer science courses. One of these students had prior
experience with robotics, as did another student who had not
taken any computer science courses. Two additional students
were currently enrolled in the introductory computer science
course. The remaining 10 students had no prior experience
with computer science or robotics.

We used two different environments for our experiments.
The first environment was created deliberately to be very
simple. We created a boxed area using four white foam
walls. Each of the four walls is 1.15 meters long, for a to-
tal area of 1.3225 m2. The floor is carpeted with a pattern.
We employed this environment for all of the experiments in
our first round (robot self-training). It was also used for the
first training run with each human subject.

Our second environment was a furniture-free office with
area approximately 8.7 m2. This office has a different car-
peting pattern than the first area, and had several obstacles of
varying appearance, including a large trash can, a backpack,
and a violin case. This was intended to be a more challenging
task and a more “natural” environment for an indoor robot.

Configurations

We calculated our metrics for each of the following config-
urations:

• Is the robot Learning, or is it Applying its learned behav-
ior?

• Which action is the robot performing?

• Is the robot imitating a human trainer (and, if so, which
human?) or imitating the sonar controller?

• In which of two test environments did the experiment take
place?

• How long was the initial training period?

• How many BSOC nodes were used for learning?

• For the human experiments, did the human have a chance
to retrain the robot after observing its behavior?

Metrics

On each cycle, the robot logged the following information:

• Current action being performed

• Whether the robot is moving autonomously or following
commands

• Current sonar value

• Time elapsed since previous log

46



From this data, we devised the following metrics:

• Mean cycle time

• Behavior Profile sum-of-squared-differences

A Behavior Profile for a given configuration is calculated
as follows. On each cycle, the robot is currently executing
one of three moves (FORWARD, LEFT, or RIGHT). Across
all executions of a given move, we calculate the probability
that the sonar reading is below a value c. We express this
as P (d < c|move). We then calculate this value for every
value of c from 0 to 4 meters, with an increment of 0.02.
This collection of values is the Behavior Profile for a given
configuration.

The rationale for this metric is as follows. We need a con-
cise way of characterizing how the human and the robot
make decisions in a specific setting. As c increases, P (d <
c|move) increases monotonically. Moves that happen more
often at lower values will see P (d < c|move) increase more
quickly in comparison to those that happen more often at
higher values. As many different situations correspond to the
sonar reading being below a given threshold value, this met-
ric provides a concise way to characterize the overall pattern
of behavior that results in a particular move.

An example of a behavior profile for one experiment is
given in Figure 2. The c values are along the x axis, and
the P (d < c|move) values are along the y axis. The top
graph is the profile for LEFT, while the one below it is the
profile for FORWARD. P (d < c|LEFT ) increases much
more quickly but plateaus at a lower level than P (d <
c|FORWARD). The dashed lines in each graph represent
the human teacher’s action selections, while the other two
lines represent the robot’s action selections.

The relative similarity between lines shows a similar
behavior. To concisely assess this similarity, we compute
the sum-of-squared-differences (SSD) between the P (d <
c|move) values of the corresponding lines. Close imitation
is indicated by a low SSD value.

Results: kNN Benchmark

We recorded five pairs of videos of 700 frames each from
our robot’s camera while piloting it remotely. Each pair was
recorded in a different room. For each pair, we trained 3nn,
9nn, BSOC-32, BSOC-64, and BSOC-128 twice; once us-
ing the first video as the training set and the second video
as the testing set, and a second time with the video roles
reversed. Figure 3 shows the mean number of correct clas-
sifications (out of 700) for each algorithm configuration. In-
creasing k and the BSOC nodes both improve performance
slightly. BSOC performs slightly worse than kNN, but their
overall performance is closely comparable.

Results: Self-Trained Robot

In this experiment, we programmed an obstacle-avoidance
controller that selected moves according to the algorithm
given in Figure 4. (We added a two-second minimum to its
turns to keep it from getting stuck.) We ran six experiments
per number of BSOC nodes, for a total of 36 experiments. In
half of the experiments, the training time was 1.5 minutes. In

Figure 2: Behavior Profile Example

kNN vs BSOC

Algorithm x̄ Correct σ

3-nn 609.5 46.0537126
9-nn 624.4 36.08693208

BSOC-32 601.1 51.96676288
BSOC-64 614.5 40.46740801

BSOC-128 616.1 36.61951514

Figure 3: kNN vs BSOC

the other half, it was three minutes. In both cases, the robot
then ran autonomously for one minute afterward.

Figure 5 shows the relationship between the number of
BSOC nodes and the cycle time. Cycle times for the Learn-
ing phase (when the system is being trained) and the Ap-
plying phase (when the learned behavior is applied) are pro-
vided separately. As expected, the cycle-time penalty for in-
creasing the number of nodes is clear. The minuscule stan-
dard deviations demonstrate that this implemented and de-
ployed learning algorithm can meet real-time deadlines with
reasonably high precision.

Figure 6 shows the relationship between the number of
BSOC nodes and how closely the learned behavior imitates
the demonstration. There is a clear trend that imitation im-
proves as the number of nodes increases, but this is qualified
by the observation that the standard deviations are large.

Interestingly, imitation becomes worse at the largest num-
bers of nodes. We attribute this to the decrease in cycle time.
When an image is acquired by the robot, it is sent to the
BSOC for classification. When the classification is com-
plete, the robot executes the corresponding action. A new
sonar reading is then obtained. Both the action and the sonar
reading are then logged. With 64 nodes, the cycle time be-

47



while not stopped
if sonar < 20 cm or bumped

Turn left for two seconds
else Drive forward

Figure 4: Pseudocode for Simple Controller

BSOC Nodes vs. Cycle Time

Nodes x̄ Cycles/s σ x̄ Cycles/s σ
(Learning) (Applying)

2 14.90 0.04 12.16 0.02
4 14.52 0.48 9.61 0.04
8 13.24 0.35 6.59 0.04

16 11.26 0.15 4.03 0.03
32 7.13 0.08 2.33 0.03
64 4.0 0.12 1.57 0.01

Figure 5: BSOC Nodes vs. Cycle Time

came slow enough that the robot had often transitioned to a
situation that would have warranted a different action. From
this observation, we concluded that about 2 cycles/second
was our minimum usable cycle time.

The training time had a small but arguably insignificant
effect on the robot’s performance, as we can see in Figure
8. While the longer training time yielded an average 50%
improvement, the standard deviations were so large that they
cannot be claimed to be significantly different.

Results: Robot Imitation of Human Behavior

In light of the above results, we chose to use 32 BSOC nodes
for the humans to train their robots. We achieved a mean
cycle time of 5.05 cycles/second for learning (σ = 1.13) and
7.69 cycles/second for applying the learned behavior (σ =
0.25). (We improved on the cycle time from our previous
experiments by not reading the bump sensors.)

Each training run had three phases. In the first phase, the
human trained the robot for a specified period of time. In the
second phase, the robot was allowed to run autonomously,
but the human could intervene and retrain it at any time, for
any reason, for any duration. In the third phase, the robot ran
autonomously without any further human intervention.

For half of our participants, the first phase lasted 1.5 min-
utes and the second phase lasted 5.5 minutes. For the others,
the first phase lasted 3 minutes and the second phase lasted
4 minutes. The final phase always lasted one minute.

Each of the 16 participants performed three training runs,
referred to as Trials 1, 2, and 3. In Trial 1, the human used the
same box environment as the self-training experiments. In
Trials 2 and 3, the human used our second environment, the
cluttered office. In Trials 1 and 2, the robot could go FOR-
WARD or LEFT. In Trial 3, the robot could also go RIGHT.

Figure 7 shows how well the robot learned to imitate the
human’s behavior. If “Retrained” is “No”, it gives the robot’s
performance after the initial training phase was complete,
but prior to the first retraining intervention from the human.

BSOC Nodes vs. Quality of Learning

Nodes x̄ SSD σ

2 31.74 17.28
4 11.62 10.36
8 4.40 7.68

16 2.87 4.34
32 3.48 5.84
64 12.20 10.57

Figure 6: BSOC Nodes vs. Quality of Learning

Quality of Learned Human Imitation

Trial Retrained? x̄ SSD σ max

1 No 9.40 12.95 44.90
1 Yes 1.77 1.77 6.96
2 No 14.24 12.15 46.76
2 Yes 1.72 1.93 7.50
3 No 20.47 16.42 65.56
3 Yes 10.84 15.21 86.79

Figure 7: Quality of Learned Human Imitation

A “Yes” indicates the robot’s performance after the final re-
training intervention had occurred.

In Trials 1 and 2, where the only movement options are
FORWARD and LEFT, the robot exhibited very good imi-
tation of the human behavior after the retraining period was
completed. Both the SSD and its standard deviation are very
low, indicating both that the behavior is similar and that this
result was consistent across all of our experiments. Further-
more, the maximum values for these cases are lower than
the mean values without retraining, further reinforcing the
observation that good imitation learning was achieved. We
consider this solid evidence that our system enables success-
ful imitation learning, provided that retraining is possible.

In Trial 3, where the human was able to instruct the robot
to go RIGHT in addition to FORWARD and LEFT, the re-
sults were much worse. Even the retraining period was in-
sufficient to bring about reliably good imitation of the hu-
man behavior. This is not too surprising given that images
of obstacles could be readily associated with instructions to
turn in either direction. It does suggest that our use of a his-
togram with more than two actions does not work and that to
accommodate multiple actions, another approach is needed.

Figure 8 shows the impact of the initial training time on
the quality of the learned behavior. While the larger time
yielded a small benefit on average, the standard deviations
were too high to conclude anything definitive.

Results: Survey of Participants

In addition to the quantitative data described above, we also
asked each participant to respond to the following state-
ment: “The robot demonstrated that it learned the behavior I
demonstrated.” The answer used a 7-point Likert scale, with
1 indicating “Strongly Disagree” and 7 indicating “Strongly
Agree.” Each rating from 1 to 4 was awarded once; there

48



Training Time vs. Quality of Learning

Teacher Time (s) x̄ SSD σ

Robot 90 12.41 15.47
Robot 180 8.21 11.31
Human 90 11.79 14.98
Human 180 9.38 12.91

Figure 8: Training Time vs. Quality of Learning

were five ratings of 5, two of 6, and five of 7, allowing us to
conclude that 75% of participants at least slightly agreed that
the robot learned the behavior that they demonstrated. Over-
all, the subjective impressions of the human participants are
consonant with the quantitative results outlined above.

Conclusion and Future Work

In this work, we employed Bounded Self-Organizing Clus-
ters as the basis for a supervised learning algorithm, applied
to the task of real-time imitation learning for robot behav-
iors. We demonstrated both theoretically and experimentally
that this system implements a real-time learning algorithm.
We further demonstrated that if a human trainer is able to re-
train a robot as needed, that this algorithm enables the teach-
ing of a visual obstacle-avoidance behavior with two actions.
Furthermore, the relationship between a single hyperparam-
eter (the number of BSOC nodes), the resulting algorithmic
time constraints, and the resulting algorithm quality was dis-
cussed theoretically and established experimentally.

Much remains to be done to overcome the limitations of
the work described in this paper. First, we would like the
robot to learn the targeted behavior across multiple environ-
ments. These could overwhelm the limited number of nodes
available given a target cycle time. To ameliorate this, we
plan to investigate the use of preprocessed image features
(e.g. (Calonder et al. 2010) (Rublee et al. 2011)) to index
the BSOC node. We could train a BSOC networks for each
environment, using an index to select the network to be em-
ployed for action selection based on the current image.

Additional work will be required to address the brittleness
of the system with respect to the number of actions available.
One option we are considering is to insert a meta-layer that
determines which of several two-action behaviors is to be
employed. Some circumstances might suggest that turning
left consistently would be advantageous, whereas other cir-
cumstances might indicate consistent right turns. This meta-
layer could either be hard-coded or could itself be learned.

We plan to investigate other visual behaviors such as wall-
following, object tracking, and object pushing. We are also
interested in real-time learning in other domains, such as
real-time sentiment analysis from social media text feeds.

Our complete implementation is available at
https://github.com/E-R-C/FLAIRS30-BSOC.

References

Argall, B. D.; Chernova, S.; Veloso, M.; and Browning,
B. 2009. A survey of robot learning from demonstration.

Robotics and Autonomous Systems 57(5).
Calonder, M.; Lepetit, V.; Strecha, C.; and Fua, P. 2010.
Brief: Binary robust independent elementary features. In
Proceedings of the 11th European Conference on Computer
Vision, 778–792.
Coates, A.; Abbeel, P.; and Ng, A. Y. 2008. Learning for
control from multiple demonstrations. In Proceedings of the
International Conference on Machine Learning.
Ferrer, G. J. 2014. Towards human-induced vision-guided
robot behavior. In Proceedings of the 2014 AAAI Fall Sym-
posium: Knowledge, Skill, and Behavior Transfer in Au-
tonomous Robots.
Ferrer, G. J. 2016. Real-time unsupervised clustering. In
Proceedings of the 27th Modern Artificial Intelligence and
Cognitive Science Conference, 47–53.
Horswill, I. 1994. Visual collision avoidance by segmen-
tation. In Proceedings of the IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, 902–909. IEEE
Press.
Kohonen, T., and Honkela, T. 2007. Kohonen network.
Scholarpedia 2(1):1568. revision #122029.
Ontanon, S.; Montana, J. L.; and Gonzalez, A. J. 2014.
A dynamic-bayesian network framework for modeling and
evaluating learning from observation. Expert Systems with
Applications 41:52125226.
Peterson, L. E. 2009. K-nearest neighbor. Scholarpedia
4(2):1883. revision #136646.
Pomerleau , D. 1991. Rapidly adapting artificial neural net-
works for autonomous navigation. In Lippmann, R.; Moody,
J.; and Touretzky, D., eds., Advances in Neural Information
Processing Systems 3, 429–435. Morgan Kaufmann.
Provost, J.; Kuipers, B. J.; and Miikkulainen, R. 2006. De-
veloping navigation behavior through self-organizing dis-
tinctive state abstraction. Connection Science 18(2):159–
172.
Rublee, E.; Rabaud, V.; Konolige, K.; and Bradski, G. 2011.
ORB: An efficient alternative to SIFT or SURF. In Proceed-
ings of the IEEE International Conference on Computer Vi-
sion.
Smith, A. 2002. Applications of the self-organizing map to
reinforcement learning. Neural Networks 15:1107–1124.
Sullivan, K., and Luke, S. 2012. Real-time training of team
soccer behaviors. In Chen, X.; Stone, P.; Sucar, L.; and
van der Zant, T., eds., RoboCup 2012: Robot Soccer World
Cup XVI. Springer.
Touzet, C. 1997. Neural reinforcement learning for behavior
synthesis. Robotics and Autonomous Systems 22(3-4).
Touzet, C. 2006. Modeling and simulation of elementary
robot behaviors using associative memories. International
Journal of Advanced Robotic Systems 3(2):165–170.

49




