
Using Genetic Programming to Evolve Board Evaluation

Functions

A Thesis

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia

In Partial Ful�llment of the Requirements for the Degree of

Master of Science

Computer Science

by

Gabriel J� Ferrer

August ����

Approvals

This thesis is submitted in partial ful�llment of the requirements for the degree of

Master of Science

Computer Science

Gabriel J� Ferrer

Approved�

Worthy N� Martin �Advisor�

James P� Cohoon �Chair�

Susan E� Carlson

�Minor Representative�

Accepted by the School of Engineering and Applied Science�

Richard W� Miksad �Dean�

August ����

Abstract

Computer programs for playing boardgames typically utilize a static board evaluation func�

tion to select their moves for each turn� Devising a good board evaluation function is	

in general	 a di
cult problem� Consequently	 substantial work has been done on devising

methods for automatically generating such functions�

Genetic programming is a variation on the genetic algorithm paradigm wherein solutions

to problems are encoded as computer programs� A population of these programs evolves

over time� The evolutionary process works by evaluating the quality of each program�s

solution to the problem at hand� This is referred to as the program�s �tness� Programs

with higher �tness are more likely to survive and propagate� Thus	 over time	 the overall

�tness of the population should improve�

This work shows that a fairly straightforward application of genetic programming re�

sults in the evolution of board evaluation functions which can play strategy games with an

appreciable level of skill� The games used for our experiments are the ancient Egyptian

game of Senet and the modern game of Othello� This helps to demonstrate the general

viability of the approach in two very di�erent game environments�

iii

To my family

Acknowledgements

Many people have provided me directly and indirectly with support and encouragement

since I arrived here in Charlottesville two years ago� I�ll start o� by thanking my research

advisor	 Worthy Martin	 for helping me to develop the ideas and concepts which have

resulted in this thesis� His input was invaluable in transforming my rough ideas into the

research results I have obtained�

Other faculty I would like to thank include Jim Cohoon and Susan Carlson for being on

my thesis committee and providing many helpful suggestions for improving this document	

and Gabe Robins for providing me with travel funding so that I could present some of this

research at the ���
 IEEE Conference on Evolutionary Computation�

Through Charlie Viles	 Joe Ganley graciously provided the LATEX style �les that were

used to format this thesis�

I�d like to thank John Kelty for many helpful suggestions during the early versions of

the research contained herein�

I�d like to thank all of my friends in the computer science department who have helped

to insure that life here is fun and entertaining� I�d particularly like to thank Paco Hope	

Sean McCulloch	 Mike Nahas	 John Regehr	 John Karro	 Dave Engler	 Dave Coppit	 Dave

Bassett	 Craig Chaney	 Luis Nakano	 Norm Beekwilder	 and Chris Oliver	 all of whom have

been frequent compatriots on lunch and beer expeditions�

Other people I�d like to thank for their friendship over the last two years include Robert

Hackenberg	 Scott and Debbie Briercheck	 Eddie D�Elicio	 Robin Prudencio	 Jennifer John�

v

vi

son	 and Jackie Emmerling�

Special thanks to God for creating such a fascinating universe�

Finally	 I�d like to thank my family� I thank my mother and father for supporting me

over the years	 through love	 friendship	 and �nancial assistance� I thank my grandmother

for helping take care of me as I grew up� And I thank my brother Bryan for being my friend

throughout the years� It is to my family that this thesis is dedicated�

Contents

Abstract iii

Acknowledgements v

� Introduction �

� Overview �

��� The Board Evaluation Function �

��� Genetic Algorithms �

��� Genetic Programming �

� Evolving Board Evaluation Functions ��

��� Problem Formulation ��

��� Application to Senet ��

��� Application to Othello ��

� Experiments and Results ��

��� Experimental Design ��

��� Results ��

����� Explanation of the Graphs ��

����� Purely Random Initial Populations �

����� Initial Populations with Seed Individuals � � � � � � � � � � � � � � � ��

vii

Contents viii

� Conclusion ��

�� Contributions ��

�� Future Work �

A The Rules of Senet ��

B The Rules of Othello ��

C Computerized Othello Playing ��

C�� Basic Othello Strategy �
�

C���� Trivial Othello Strategies �
�

C���� Mobility and Stability �
�

C�� Computing Othello Board Evaluation Functions � � � � � � � � � � � � � � � �

C���� Computing Mobility �

C���� Computing Stability �
�

C���� Complete Board Evaluation Functions � � � � � � � � � � � � � � � � �
�

C�� Conclusion ��

D Other Methods for Evolving Game Players ��

E Sets of Terminals and Non�terminals ��

E�� Non�terminals and Terminals Common to Both Games � � � � � � � � � � � � ��

E�� Non�terminals and Terminals Speci�c to Senet � � � � � � � � � � � � � � � � ��

E�� Non�terminals Speci�c to Othello �

List of Figures

��� Pseudocode for a Genetic Algorithm �

��� A Sample Tree ��

��� Example of Crossover ��

��� Pseudocode for the GP Formulation ��

��� Unseeded Evolved Senet Players vs� Random Players	 Population �
�	 ���

Generations ��

��� Unseeded Evolved Senet Players vs� Handcrafted Heuristics	 Population �
�	

��� Generations ��

��� Unseeded Evolved Senet Players vs� Random Players	 Population �
�	 ���

Generations ��

��� Unseeded Evolved Senet Players vs� Handcrafted Heuristics	 Population �
�	

��� Generations ��

��
 Unseeded Evolved Senet Players vs� Random Players	 Population
��	 ���

Generations ��

��� Unseeded Evolved Senet Players vs� Handcrafted Heuristics	 Population
��	

��� Generations ��

��� Unseeded Evolved Senet Players vs� Random Players	 Population
��	 ���

Generations ��

ix

List of Figures x

��� Unseeded Evolved Senet Players vs� Handcrafted Heuristics	 Population
��	

��� Generations ��

��� Evolved Senet Players Every
 Generations vs� Heuristics	 Population �
�	

��� Generations ��

���� Evolved Senet Players Every
 Generations vs� Heuristics	 Population
��	

��� Generations ��

���� Comparison of Winning Senet Individuals Evolved for �
� Generations vs�

�� Generations ��

���� Unseeded Evolved Othello Players vs� Random Players	 Population �
�	 ���

Generations ��

���� Unseeded Evolved Othello Players vs� Handcrafted Heuristics	 Population

�
�	 ��� Generations ��

���� Unseeded Evolved Othello Players vs� Random Players	 Population �
�	 ���

Generations �

���
 Unseeded Evolved Othello Players vs� Handcrafted Heuristics	 Population

�
�	 ��� Generations �

���� Unseeded Evolved Othello Players vs� Random Players	 Population
��	 ���

Generations ��

���� Unseeded Evolved Othello Players vs� Handcrafted Heuristics	 Population

��	 ��� Generations ��

���� Unseeded Evolved Othello Players vs� Random Players	 Population
��	 ���

Generations ��

���� Unseeded Evolved Othello Players vs� Handcrafted Heuristics	 Population

��	 ��� Generations ��

���� Evolved Othello Players Every
 Generations vs� Heuristics	 Population �
�	

��� Generations ��

List of Figures xi

���� Evolved Othello Players Every
 Generations vs� Heuristics	 Population
��	

��� Generations ��

���� Comparison of Winning Othello Individuals Evolved for �
� Generations vs�

�� Generations ��

���� Seeded Evolved Senet Players vs� Random Players � � � � � � � � � � � � � � ��

���� Seeded Evolved Senet Players vs� Handcrafted Heuristics � � � � � � � � � � ��

���
 Comparison of Winning Senet Individuals Evolved With Seeds to Those

Evolved Without Seeds ��

���� Seeded Evolved Othello Players vs� Random Players � � � � � � � � � � � � � ��

���� Seeded Evolved Othello Players vs� Handcrafted Heuristics � � � � � � � � � ��

���� Comparison of Winning Othello Individuals Evolved With Seeds to Those

Evolved Without Seeds ��

A�� The Senet Board ��

B�� The Othello Board �
�

�

Introduction

Developing intelligent computer players of strategy games is a problem that AI research has

been addressing since the �eld began� Because excellence in the play of strategy games has

often been considered to be a sign of intellectual excellence	 some researchers believe that

developing an intelligent game player could well be a big step on the road to developing

a more generally intelligent machine� This thesis examines using the genetic programming

paradigm ���� to evolve board evaluation functions for game playing programs�

A fairly extensive literature on the subject of developing good computer strategy game

players in general and developing good board evaluation functions in particular testi�es to

the di
culty of doing so �examples include ��� ���� ���� ��
� ������ Consequently	 designing

adaptive systems capable of automatically generating such functions is appealing� The

notion of such adaptive systems can be found as early as Samuel�s landmark checkers playing

program ���� that was able to automatically adjust parameters of its evaluation function as

it played in order to improve its performance� A number of other researchers have likewise

attempted to develop self�improving board evaluation functions ���� ���� ���� ��
� ���� ����

����

Genetic programming gives us an adaptive framework that can automatically specify

possible board evaluation functions using a natural representation to evolve players using a

�

�

survival�of�the��ttest mechanism� The formulation given in this work also has the advantage

�over a Samuel�like formulation� of allowing the evolution of individuals	 i�e�	 board evalu�

ation functions	 that are nonlinear in nature	 thus enlarging the range of possible solutions

��
� ����

Our formulation for these functions allows the strategy encoded in each board evaluation

function to compete against others for �survival� in a tournament format� The performance

of each board evaluation function in the tournament will be quanti�ed as an integer and

be called the ��tness� of the strategy� A tournament over a population requires that every

individual be a �feasible� solution	 i�e�	 every individual exhibits legal play of the game� Our

genetic programming framework maintains the property that every considered �solution�

is feasible�

An additional bene�t of this problem formulation is that we can incorporate and attempt

to improve existing board evaluation functions by specifying them to be members of the

initial population� This approach of population seeding can result in the evolution of better

�t individuals in a shorter period of time when compared to an initial population consisting

entirely of random individuals ����

This work shows that a fairly straightforward application of genetic programming results

in the evolution of board evaluation functions that can play strategy games with an appre�

ciable level of skill� The games used for our experiments are the ancient Egyptian game

of Senet and the more modern game of Othello� This helps to demonstrate the general

viability of the approach in two very di�erent game environments�

This thesis is organized in the following manner� Overviews of the history of board

evaluation functions and of genetic programming are contained in Chapter �� Discussion of

the formulation of �nding and improving board evaluation functions and their application

to Senet and Othello can be found in Chapter �� Descriptions of our experiments and the

results obtained can be found in Chapter �� Conclusions and future work are discussed

in Chapter
� The rules of Senet are described in Appendix A� The rules of Othello are

�

described in Appendix B� A detailed discussion of Othello strategy and its implications for

computer Othello programs can be found in Appendix C� An overview of other evolutionary

approaches to automatically generating boardgame players can be found in Appendix D�

�

Overview

This chapter gives an overview of previous work in the areas of developing static board

evaluation functions and in genetic programming�

��� The Board Evaluation Function

The time gap between the invention of the electronic computer and the implementation of

schemes for computers to play strategy games was fairly short� As early as ��
�	 C� E�

Shannon speculated on the possibility of using a computer to play chess	 a revolutionary

idea at the time ����� He was the �rst to suggest �in print� the use of a board evalua�

tion function in conjunction with a search mechanism� Arthur Samuel �rst implemented a

checker program on the IBM ��� in ��
�	 recoded it for the IBM ��� in ��
�	 and demon�

strated it on television in ��
�� His ��
� paper on the subject ���� was one of the �rst

attempts to devise a credible computer game player for a strategy game	 and one of the

�rst to incorporate some form of machine learning�

Samuel isolated several features of the checkers game that he considered to be useful

information for deciding where to move� Examples of the features Samuel used include

relative piece advantage and positional advantage� These features take on numeric values

and are then used as terms in a linear polynomial with coe
cients for each term� A board

�

���� The Board Evaluation Function

evaluation function in his system consists of �� terms being selected out of a set of ��

possible terms� �In addition	 a term representing the total di�erence in pieces between the

two sides is always in use��

Samuel devised a machine learning technique involving two tasks� to determine which

terms to use and how each term should be weighted� The initial values of the coe
cients

used get altered slowly over time depending on the performance of the board evaluation

function as the game progresses	 with changes to the coe
cients being made after each game

in the training process� The terms themselves are ranked according to how their presence

correlates with successful game play	 and low ranking terms get replaced every eight games

or so	 on the average�

An overview of the design issues involved with creating e�ective board evaluation func�

tions has been given by Hans Berliner	 a noted backgammon player and programmer ���� A

good overview of heuristics for playing board games can be found in Barr and Feigenbaum�s

Handbook of Arti�cial Intelligence ���� The international chess master David Levy has also

written several books on this subject� His book Computer Gamesmanship ���� gives a good

overview of the issues involved in developing computer game players and discusses speci�cs

of implementing computer game players for a large number of games�

Among the papers which focus on the application of machine learning concepts to the

development of board evaluation functions	 one of the best known is the work of Gerald

Tesauro on backgammon ����� He used the TD��� function developed by Sutton ���� for the

training of multi�layer perceptrons to develop a board evaluation function for backgammon

that learned strategy for the game by playing against itself hundreds of thousands of times�

Each of these games has the perceptron	 i�e�	 a neural network	 select moves for both sides at

each step� A move selection is made by having the network score every possible legal move�

The move selected is the one with the maximum expected outcome for the currently moving

side� At each time step	 the weights of the network are modi�ed using the TD��� algorithm�

The algorithm determines how much the expected outcome improved �or declined� when

���� Genetic Algorithms �

compared to the outcome expected at the previous time step	 and uses a temporal credit�

assignment formula multiplied by this di�erence in the expected outcome to adjust the

weights within the network� A more rigorously mathematical description of the workings

of this algorithm can be found in the papers of Sutton ���� and Tesauro ����� Using this

algorithm	 from random initial weights	 the neural net learned to play backgammon at a

strong intermediate level	 solely through this self�play mechanism�

Lee and Mahajan ��
� used Bayesian learning to optimize the nonlinear evaluation poly�

nomial which was used by their Othello playing program	 Bill� Bayesian learning was used

to decide whether a particular position represents a win or a loss based on features ex�

tracted from the board� A discussion of their use of Bayesian learning to optimize the

board evaluation function can be found in Appendix C�

Genetic algorithms have also been used in various ways to generate or improve board

evaluation functions� The work in this area is discussed in more detail in Chapter ��

��� Genetic Algorithms

What is now called the genetic algorithm was �rst described by John Holland in ���

in his book Adaptation in Natural and Arti�cial Systems ����� The genetic algorithm was

inspired by the process of evolution in the natural world	 wherein a population of individuals

competes for survival	 and the individuals which are the most �t survive and propagate

themselves�

The genetic algorithm constitutes an arti�cial analog to this process in the following

manner ����� �Many variations on the scheme described below have also been used�� Indi�

viduals are represented as �xed�length chromosonal strings� Each piece of the chromosonal

string encodes some attribute of a potential solution to a problem that the creator of the

genetic algorithm is attempting to solve� For instance	 if one is attempting to optimize a

polynomial of several variables by trying various combinations of values of the variables	

a chromosonal string would contain a representation of a particular selection of variable

���� Genetic Algorithms �

values� An initial base population of individuals is constructed from randomly generated

chromosonal strings�

To judge the �tness of individuals in the population for solving the problem for which

we are using the genetic algorithm	 a �tness operator is speci�ed� This operator analyzes

each chromosonal string in turn and assigns each string	 i�e�	 individual	 a �tness value�

For example	 if the task of the genetic algorithm is to minimize the total weights of all the

edges in a weighted graph	 the �tness function would sum all the weights of all the edges and

assign a �tness value based on that computation� Better �tness values would be assigned

to individuals having lower totals	 while still satisfying any other constraints which may be

present�

In the natural world	 a phase of reproduction of individuals within a species followed

by a phase of selection that results in another population is referred to as a generation� In

the context of the genetic algorithm	 the term means essentially the same thing� Once the

�tness has been determined for every individual in the population	 the genetic algorithm

creates the population for the next generation� Some of the individuals in that population

are survivors from the current generation� The higher the �tness of a particular individual	

the more likely the individual is among the survivors�

The bulk of the next population is created by means of crossover� The individuals

created by crossover are made in pairs� To create each pair of new individuals	 two parents

are selected in a �tness�proportionate manner� A crossover point is selected� The parent

strings are then splintered into two pieces at the crossover point� The �rst piece of the �rst

parent and the second piece of the second parent are joined to form a new chromosonal

string� This is the �rst child� The two remaining pieces are joined to form the second child�

This version of the crossover process is known as one�point crossover ����� Other crossover

operators also exist�

Once the new population has been created	 a relatively small number of individuals are

mutated� A mutation consists of randomly changing one of the elements of the chromosonal

���� Genetic Programming �

string representing an individual�

The evolutionary�like process	 inspired by the concept of survival of the �ttest	 repeats

for many generations until a stopping criterion is achieved� Example stopping criteria

include� the passage of a preset number of generations	 the �convergence� of the population

to a particular solution	 or the exhaustion of an execution�time limit�

A pseudocode description of the genetic algorithm is given in Figure ���� This description

is only one version of the genetic algorithm	 and an enormous number of variations on this

basic scheme can be found in the literature�

��� Genetic Programming

The concept of genetic programming was �rst formulated by John R� Koza in ���� ����

and further developed in his two books on the subject ���� ����� The basic outline of

the genetic programming paradigm bears a strong resemblance to that given above for

the �standard� genetic algorithm� The key di�erence lies in how individuals are encoded�

Rather than encoding individuals as chromosonal �xed�length strings	 they are instead

encoded as computer programs� The programs are typically expressed as LISP functions�

These functions are constructed from a predetermined �and application speci�c� set of

function templates �referred to as non�terminals� and constants �referred to as terminals��

As a LISP program	 each individual is a syntax tree with the root of the tree being a non�

terminal from the non�terminal set and the children being arguments to this non�terminal�

Each child can either be a terminal �making it a leaf of the tree� or another non�terminal

�making it a subtree�� An example of such an individual can be seen in Figure ����

Given this representation	 it is fairly straightforward to construct analogs in the context

of genetic programming for the operations found in standard genetic algorithms� Aside from

the di�erences in the details of representation	 the outline for the operation of genetic pro�

gramming is identical to that of the �standard� genetic algorithm� The crossover operator

works as follows� A node is selected in a uniformly random manner from the tree of each

���� Genetic Programming �

population � create�initial�population�population�size�

while �stopping criteria is not met�

compute�fitness�population�

for �i � �� i �� number�of�crossovers� i �� ��

parent� � select�a�parent�in�proportion�to�fitness�population�

parent� � select�a�parent�in�proportion�to�fitness�population�

crossoverpoint � randomly�chosen�index�into�chromosonal�string��

new�children	i
 � crossover�parent�� parent�� crossoverpoint�

new�children	i��
 � crossover�parent�� parent�� crossoverpoint�

for �i � number�of�crossovers � �� i �� population�size� i���

new�children	i
 � select�survivor�in�proportion�to�fitness��

for �i � �� i �� number�of�mutations� i���

mutate�new�children	randomly�selected�index��
�

population � new�children

Figure ���� Pseudocode for a Genetic Algorithm

���� Genetic Programming ��

 Add

num-pieces Subtract

num-legal-moves num-corners-occupied

Figure ���� A Sample Tree

���� Genetic Programming ��

A

B C

D E

F

G

H I

J

Crossover point

Crossover point

A

B I

F

G

H

J

C

D E

Figure ���� Example of Crossover

parent as the crossover point� The subtrees rooted at the crossover points of each parent

are exchanged	 generating two children� An example of crossover can be seen in Figure ����

The mutation operator replaces a randomly selected node or leaf with another randomly

generated leaf or subtree�

The �tness operator executes the genetic program in the applicable environment with

appropriate arguments �if any� and evaluates its performance to determine the �tness value�

The precise mechanism for accomplishing this will depend on the task at hand� For example	

if an individual happens to be a function which is being optimized	 executing the �tness

operator may simply consist of evaluating the function with certain parameters� If an

individual is a control program for a robot	 executing the �tness operator may involve

judging the robot�s performance on some task in a simulated environment� If an individual

is a board evaluation function	 executing the �tness operator may involve playing a complete

���� Genetic Programming ��

game to determine the function�s performance�

In general	 when a problem lends itself well to representation as a computer program	

applying genetic programming is a viable option� It has even been shown that inclusion

of primitives to read and write memory in some fashion can make genetic programming

Turing Complete	 enabling the generation of any conventional computer program ��
�� What

programs can actually be evolved in practice remains an open problem� If the sets of non�

terminals and terminals contain any kind of inde�nite looping operator	 it is possible �and	

it would appear	 not entirely unlikely� that individuals in the population might specify

individuals that when executed fall into in�nite loops� The conventional solution to this

problem �assuming that inde�nite looping constructs are incorporated at all� is to have a

time limit on the execution of an individual to insure that �tness evaluation stops as it

should�

A problem encountered with encoding individuals as trees and using the crossover op�

eration as described above is that the individuals are of variable sizes� It is possible to

create individuals so large that they signi�cantly slow down the system as a whole	 partly

because they take a long time to evaluate and partly because dynamic memory allocation

mechanisms slow down when large	 dynamic data structures are involved� In spite of these

and many other practical problems	 we have implemented a working genetic programming

system to explore the applications of GP to board evaluation function evolution�

�

Evolving Board Evaluation Functions

This chapter describes the form of the genetic programming paradigm that we used to evolve

board evaluation functions in our experiments� Separate sections in this chapter describe

the particulars of the application of our GP formulation to Senet and to Othello� An

overview of other schemes to generate board evaluation functions based upon evolutionary

computations can be found in Appendix D�

��� Problem Formulation

The genetic programming paradigm requires the formulation of potential solutions as evalu�

able programs� We have chosen to represent each individual player as a static board evalu�

ation function�

The system can simulate the play of an individual by constructing the set of possible

moves	 applying the represented evaluation function to the board con�gurations correspond�

ing to each move in the set	 and selecting the move with the highest resulting evaluation�

Thus	 the individuals of our population are functions that take a board con�guration and

return an evaluation number� We happen to stipulate that larger numbers indicate board

con�gurations	 and thereby	 moves	 that the individual �nds more preferable� In the event

that the evaluation function returns the same largest number for multiple moves	 the default

��

���� Problem Formulation ��

behavior is to select one of the moves randomly by using a uniform distribution to select

one from the set of largest�evaluation�number moves�

Note that with this formulation	 any function that returns a number whenever executed

thus becomes a feasible player� Our system will maintain this property for all individuals

created� Maintaining this property avoids the potential complication of introducing indi�

viduals into the population who do not have a well�de�ned �tness	 i�e�	 who do not play

the game legally� For example	 infeasible tic�tac�toe players can be created by Angeline and

Pollack�s system ���� In their representation	 if a player never invokes the function which

causes a move to occur	 the player will never move and the opponent will get bonus moves�

Such individuals are not	 strictly speaking	 playing legal tic�tac�toe and can be considered

infeasible as a result�

The �tness operator determines �tness using a competition scheme modeled on a sports

tournament	 similar to that used for the game of tic�tac�toe by Angeline and Pollack ����

The individuals in the population are paired o� arbitrarily and then play some number of

games against each other� The individual who wins the most games is declared the winner

and progresses to the next round of the tournament� The losers at each level all have the

same �tness�

The initial population of board evaluation functions is generated as follows� For each

individual	 a root non�terminal is selected which is a non�terminal requiring at least � ar�

guments� Another non�terminal or terminal is randomly selected for each argument �again	

�randomly� means that a uniform distribution was used�� If the selected item is a non�

terminal	 its arguments are determined in the same manner� This growing process termi�

nates when terminals have been selected for all remaining argument slots�

The crossover operator works as follows� A node is selected in a uniformly random

manner from the tree of each parent as the crossover point� The subtrees rooted at the

crossover points of each parent are exchanged	 generating two children� This is the standard

genetic programming crossover operator as described by Koza �����

���� Problem Formulation �

The reproduction operator copies selected individuals from the old population into the

new population� For each individual reproduced	 there is a one in eight chance that that

individual will mutate� A mutation consists of replacing a randomly selected subtree �with

uniform distribution� of the individual with a non�terminal generated randomly in the same

manner that the individuals in the initial population are generated�

A population of individuals is evolved in the following manner� Selection for both

reproduction and crossover is done in a rank�proportionate manner ���� One�eighth of the

new population is reproduced from the original population at each new generation	 with

the remainder of the new population being generated via crossover� These proportions are

based on those used by Koza in his �rst book ����� In that work	 his experiments generated

��� of each new population by reproduction and the remaining ��� by crossover� We used

one�eighth because our population sizes were powers of two in order to facilitate the use of

the �tness function which will be discussed in detail later in this chapter� This evolutionary

process ends after a preset number of generations have been completed�

A pseudocode sketch of the above formulation is given in Figure ����

Our implementation also had to address issues concerning the composition of individu�

als	 namely	 the allowable size of individuals	 and the pool of terminals and non�terminals

available� If the size of individuals is permitted to grow without bound	 the system may

run out of memory or run excessively slow� In order to prevent the size of individuals from

getting too large	 height limits are placed upon both newly created individuals and individ�

uals generated by the crossover process� The limits used are a maximum tree height of six

for a newly created individual	 and a maximum tree height of seventeen for an individual

which has been created through crossover or mutation� These same limits have been used

by Koza ����� We experimented brie�y with removing height limits from the process to de�

termine whether the presence of height limits negatively impacted the ability of individuals

to evolve� No signi�cant di�erence was observed between the �tness of individuals evolved

with and without the standard height limits�

���� Problem Formulation ��

number�of�crossovers � ��
� � population�size�

population � create�initial�population�population�size�

while �last generation not yet reached�

run�tournament�and�rank�population�

for �i � �� i �� number�of�crossovers� i �� ��

parent� � select�a�parent�in�proportion�to�fitness�population�

parent� � select�a�parent�in�proportion�to�fitness�population�

crossover�point�� � randomly�chosen�node�string�length� parent��

crossover�point�� � randomly�chosen�node�string�length� parent��

new�children	i
 � crossover�parent�� crossover�point���

parent�� crossover�point���

new�children	i��
 � crossover�parent�� crossover�point���

parent�� crossover�point���

for �i � number�of�crossovers � �� i �� population�size� i���

new�children	i
 � select�survivor�in�proportion�to�fitness�population�

if �random��� �� �� mutate�new�children	i
�

population � new�children

Figure ���� Pseudocode for the GP Formulation

���� Application to Senet ��

Naturally	 the collection of non�terminals and terminals has a profound in�uence on

what evaluation functions might potentially evolve� It is important to make sure that this

collection contains enough useful items so that good board evaluation functions have a

good possibility of evolving� To this end	 we incorporated non�terminals and terminals

that automatically compute the values of certain strategic features� For example	 in the

Othello implementation	 there is a non�terminal that computes how many corner squares

are occupied by a speci�ed player� At the same time	 it is important to be sure that

the collection does not predispose the evolutionary process towards a particular strategic

school of thought based upon the non�terminals and terminals selected� Terminals and

non�terminals that are singularly complex can create immediate strong local maxima� This

can preclude the construction	 through evolution	 of complex combinations of other simpler

terminals and non�terminals� Balancing these concerns is a key issue in deciding upon a

worthwhile GP formulation� The next two sections address this and other game�speci�c

concerns of this formulation�

��� Application to Senet

In the game of Senet each turn begins with a randomized construction �by the use of throw

sticks� of a set of moves� The player then gets to select the sequence in which the moves

in the constructed set are executed� �A summary of the rules can be found in Appendix A	

while the detailed rules can be found in ������ The board evaluation function then selects

the most desirable move of those available from the present board position� Because of the

probabilistic nature of the game	 a scheme to search beyond one ply is too computationally

expensive to be practical	 as is also the case in backgammon ����� Consequently	 we limit our

application of the board evaluation function to the moves which can be made immediately�

Each match in the Senet tournament is a best�of�three games match	 with the winner

of two or three games being declared the overall winner� We decided to use a three game

match to reduce the chance of a superior individual losing to an inferior individual because

���� Application to Senet ��

of bad luck in the �rst game� We did not use more than three games because one of our

major performance bottlenecks is that it takes a long time to execute a game between two

individuals	 and so we did not want each pair to play too many� Since it is theoretically

possible for a Senet game to last inde�nitely	 a limit of
�� turns was imposed on the

duration of a game� Our experiments have shown that Senet games rarely take even half

that many turns to complete	 so we believe that
�� turns is a very reasonable limitation� In

a sample of ��	��� games	 the average number of turns played per game was approximately

�
�� In the event that a game lasts as long as
�� turns	 the victor is determined arbitrarily�

The non�terminals and terminals which were incorporated into the set available for the

construction of Senet evaluation functions fall into the following categories�

� Arithmetic Operators� The addition	 subtraction	 and multiplication operators

enable the board evaluation function to manipulate integers in order to express desired

preference numbers for the board positions being evaluated�

� Logical and Decision Operators� The if operator enables the board evaluation

function to make decisions regarding what argument to execute	 based on the result of

a boolean computation� The and	 or	 and not operators enable the board evaluation

function to manipulate the results of boolean terminals and operators�

� Integers� The integers from � to �� are included� These enable the function to express

preferences and also to specify board locations for the board querying non�terminals�

� Board Querying Operators� Information regarding the current state of the board

can be obtained using the board querying operators� Examples of these include op�

erators to determine the contents of a board location or to �nd the number of moves

available to a player�

A complete description of the set of terminals and nonterminals can be found in Ap�

pendix E�

���� Application to Othello ��

��� Application to Othello

This section discusses the issues involved in applying genetic programming to evolving board

evaluation functions for Othello� The game of Othello has been the target of a fair amount

of work aimed at automatically generating or adjusting board evaluation functions� An

overview of using computers to play Othello can be found in Appendix C� Some examples

of using other evolutionary computation techniques to evolve Othello board evaluation

functions are discussed in Appendix D�

In the game of Othello	 on each turn a player gets to place exactly one piece on the board

if the player has a legal move available� The board evaluation function is used to select

the most desirable move by evaluating each resulting board position� The board evaluation

function can be used in conjunction with an alpha�beta search mechanism to evaluate board

positions at a deeper level� This is not possible for Senet because the element of probability

at each move makes it impossible to accurately predict which moves will be available more

than one level ahead of the current position� The deterministic nature of Othello	 by

contrast	 makes the use of a search mechanism straightforward�

For �tness evaluation	 each tournament match between two individuals consisted of four

games	 two with each player going �rst� The player with the highest sum of scores over the

four games was declared the winner� We wanted the individuals to play an even number

of games against each other	 so that each player would be each color twice� This is an

attempt to cancel out potential advantages involved with being assigned a particular color�

Note that although the game of Othello is deterministic in nature	 we still chose to play two

games with each player starting� We did this because of the potentially nondeterministic

results of the default behavior mentioned in section ���� Note that the players themselves

are deterministic and will always return the same value for any given board con�guration�

Finally	 in the �rare� case where both players had the same total score for all four games	

the winner was picked arbitrarily�

The non�terminals and terminals incorporated into the set available for the construction

���� Application to Othello ��

of Othello evaluation functions fall into the following categories�

� Decision	 Arithmetic	 and Logical Operators� These are the same as those used

in the Senet formulation�

� Integers� The integers from � to �� are included� These enable the function to express

preferences and also to specify board locations for the board querying non�terminals�

� Board Querying Operators� As with the Senet formulation	 these return infor�

mation about the current state of the board� Examples include queries about the

contents of a board location and how many pieces a particular player has�

A complete description of the set of terminals and nonterminals can be found in Ap�

pendix E�

�

Experiments and Results

This chapter discusses the experiments we ran and the results we obtained in evolving board

evaluation functions� These results show that the problem formulation described in Chapter

� was reasonably e�ective for evolving players for both Senet and Othello� Our scheme to

empirically evaluate the results of the evolutionary process is described� The incorporation

of handcrafted individuals into the starting population in an attempt to improve the �nal

results of the evolutionary process is also discussed�

��� Experimental Design

Due to the combinatorial explosion involved in computing potential future board states in

any non�trivial boardgame	 it is di
cult at best to know what an optimal board evaluation

function should be� We also lack a distance measure on the space of possible functions�

These facts require us to create an empirical evaluation scheme� The �tness of the players

for our evolutionary purposes is determined by how good they are at defeating each other�

But how do we know that the overall winner	 that is	 the tournament winner in the last

generation	 has any objective value whatsoever� Our empirical evaluation scheme uses a

series of baseline players to evaluate the quality of our results� Each baseline player is

implemented from the same set of terminals and non�terminals available to the individuals

��

���� Experimental Design ��

being evolved through genetic programming	 and they are subject to the same default

behavior�

For the game of Senet	 the following players were devised� One group of baseline players

is a set of eight individuals �referred to as RND� through RND� below� generated randomly

by the code that creates initial populations� The other group consists of �ve handcrafted

players �referred to as HC� through HC
 below� inspired by strategies we have used in

playing the game� The players in this group use a variety of combinations of some of the

following strategies�

�� Minimize the number of my pieces on the board�

�� Maximize the number of my opponent�s pieces on the board�

�� Avoid the Waterhouse pitfall�

�� Place my opponent in the Waterhouse pitfall�

� Keep the spread of my pieces close together�

�� Maximize the distance between my opponent�s pieces and the goal�

�� Capture an opponent�s piece�

�� Set up a barricade�

Player HC� incorporates the �rst six strategies mentioned above� HC� incorporates all

eight� HC�	 HC�	 and HC
 are	 by comparison	 much more simpli�ed� HC� concentrates

on item �	 HC� concentrates on item �	 and HC
 combines the two	 giving preference to

obtaining captures�

One additional player we included is an individual that always returns a constant for

each board con�guration	 which in conjunction with the system�s default behavior has the

e�ect of selecting a random move at each turn	 with a uniform distribution over the set of

moves constructed for the current turn� �This player will be referred to as Const below��

���� Experimental Design ��

We used a similar evaluation scheme for Othello� A detailed overview of Othello strategy

as it has been used in constructing Othello board evaluation functions can be found in

Appendix C� For the purposes of performance evaluation here	 we implemented some very

simple and straightforward Othello strategies� Each of the following strategies is represented

in this group�

� OHC� tries to maximize the di�erence in material between the two players at all

times�

� OHC� tries to maximize the number of moves it has available�

� OHC� maximizes its moves and tries to minimize its opponent�s moves at the same

time�

� OHC� computes the product of its number of moves available and the number of

corners it occupies and subtracts from that the corresponding product for its opponent�

� OHC
 combines OHC� and OHC� by running OHC� until move
�	 and then running

OHC� for the rest of the game�

As with Senet	 we also included an individual that e�ectively makes a random move on

every turn�

For the results presented below	 we compared pairs of players by having them play a

set of ��� games against each other	 so as to give us statistical con�dence in the results of

the test� This works for the Senet players because the game of Senet is not deterministic�

This works for the Othello players because the default behavior in the event of an evalua�

tion which results in multiple board con�gurations being assigned the same best evaluation

number	 the move is selected randomly� Note that this testing phase is di�erent than the

tournament structure used for �tness calculation and is done after the fact as an external

quality measure� Some of our experiments utilized initial populations which consisted en�

tirely of randomly generated individuals� The rest of our experiments contained a small

���� Results ��

number of seed individuals in the initial population�

We wanted to see how population seeding would work in the context of genetic program�

ming	 because it has been used successfully before with more standard genetic algorithms

���� Our expectation was that incorporating some of our knowledge about the games into

the initial population would improve the results of the search process� Incorporating hand�

crafted players which encode useful strategies for game play can provide promising direc�

tions for where the search might proceed� They interact with the rest of the population in

the tournament format	 and when successful	 get selected for reproduction and crossover�

When crossover and mutation operate on these individuals	 there is the possibility that an

improvement on the seed individual will emerge� We decided to seed the population with

only a small number of such individuals	 so as to encourage diversity in the population�

Our experiments took a long time to complete� Evolving populations for ��� generations

took around � weeks� Consequently	 we did not have enough time available to experiment

with a large number of di�erent values for the parameters of evolution� For example	 we

would like to have experimented with di�erent values for the mutation rate	 the proportion

of the population created by crossover	 the number of games used in each match in the

tournament	 the number of seed individuals in the starting populations where they were

used	 and a greater range of population sizes�

��� Results

����� Explanation of the Graphs

Each of the graphs in this section describes the performance of a given set of evolved

players against a given set of test players	 e�g� RND� and HC�� The evolved players are

referred to in the graphs by numbers	 e�g� One	 Two	 or Three� Each point on the x�axis

indicates a test player against which an evolved player competed� The y�axis of each graph

represents the total number of victories out of ��� won by each evolved player� In the

���� Results �

case of Othello	 ties are counted as one�half of a victory� Thus	 values greater than ���

indicate increasingly better performance for the evolved players	 while values lower than

��� indicate progressively worse performance� Each of the evolved players is indicated by a

point designating its score against a particular test player�

The above description su
ces for most of the graphs� A few of the graphs �Figures ���	

����	 ����	 and ����� chart the performance of the best individuals in a population as that

population evolved� So for those graphs	 the x�axis indicates from which generation the

�current best individual� at that position has been extracted� The y�axis represents the

number of victories out of ��� won by the �current best individual�� Each line charts how

the �current best individual� performed against a particular test player as the population

evolved�

A few other graphs �Figures ����	 ����	 ���
	 and ����� are plots of the average scores

against the baseline players of one set of winning individuals vs� the average scores of

another set of individuals� For these graphs	 the performance of the randomly generated

players is averaged together into a single composite baseline player� ��
�� is the designation

for the average score of all the winning individuals which emerged from populations of

size �
�� �
��� similarly designates the average score of all the winning individuals from

populations of size
���

����� Purely Random Initial Populations

������� Senet

We evolved a total of �� populations of Senet players with purely random initial populations�

Nine of them had populations of size �
� and the other seven had populations of
��� Out of

the populations of size �
�	 four were evolved for ��� generations	 four for ��� generations	

and one for ��� generations� Out of the populations of size
��	 four were evolved for ���

generations	 two for ��� generations	 and one for ��� generations�

Against the randomly generated individuals and Const	 the best individuals from each

���� Results ��

population	 i�e� the winners of the last tournament in the last generation	 all performed

extremely well	 typically winning �
� or more of games played against those individuals	

as can be seen in Figures ���	 ���	 ��
	 ���	 ���	 and ����� Against the handcrafted baseline

players	 performance was still quite good	 with none of the evolved individuals winning less

than half the games against any of the baseline players	 and more often than not winning

about ��� to ��� of the time� These results can be observed in Figures ���	 ���	 ���	 and

����

One aspect of the dynamics of the evolutionary process is shown in Figures ��� and �����

In both graphs	 the best individual in the population	 i�e�	 the individual which won the

tournament during the �tness evaluation of that population	 is taken every �ve generations

and tested against the test individuals� Looking at the �gures	 we can observe that the

best individual in the larger population tends to be consistently slightly better than the

best individual in the smaller population until soon after the ���th generation� From that

point on	 the best individuals in each population tend to perform similarly	 with occasional

anomalous individuals demonstrating poor performance� The non�deterministic nature of

genetic programming is what permits such anomalies to occur� The competitive nature of

the �tness function encourages the resurgence of superior individuals and helps to minimize

the overall impact of these anomalies�

���� Results ��

0

50

100

150

200

Const RND1 RND2 RND3 RND4 RND5 RND6 RND7 RND8

N
um

be
r

of
 V

ic
to

rie
s

by
 E

vo
lv

ed
 P

la
ye

rs

Baseline Player

Evolved Players vs. Random Players, 100g256p

One
Two

Three
Four

Figure ���� Unseeded Evolved Senet Players vs� Random Players	 Population �
�	 ���

Generations

0

50

100

150

200

HC1 HC2 HC3 HC4 HC5

N
um

be
r

of
 V

ic
to

rie
s

by
 E

vo
lv

ed
 P

la
ye

rs

Baseline Player

Evolved Players vs. Baseline Players, 100g256p

One
Two

Three
Four

Figure ���� Unseeded Evolved Senet Players vs� Handcrafted Heuristics	 Population �
�	

��� Generations

���� Results ��

0

50

100

150

200

Const RND1 RND2 RND3 RND4 RND5 RND6 RND7 RND8

N
um

be
r

of
 V

ic
to

rie
s

by
 E

vo
lv

ed
 P

la
ye

rs

Baseline Player

Evolved Players vs. Random Players, 200g256p

One
Two

Three
Four

Figure ���� Unseeded Evolved Senet Players vs� Random Players	 Population �
�	 ���

Generations

0

50

100

150

200

HC1 HC2 HC3 HC4 HC5

N
um

be
r

of
 V

ic
to

rie
s

by
 E

vo
lv

ed
 P

la
ye

rs

Baseline Player

Evolved Players vs. Baseline Players, 200g256p

One
Two

Three
Four

Figure ���� Unseeded Evolved Senet Players vs� Handcrafted Heuristics	 Population �
�	

��� Generations

���� Results ��

0

50

100

150

200

Const RND1 RND2 RND3 RND4 RND5 RND6 RND7 RND8

N
um

be
r

of
 V

ic
to

rie
s

by
 E

vo
lv

ed
 P

la
ye

rs

Baseline Player

Evolved Players vs. Random Players, 100g512p

One
Two

Three
Four

Figure ��
� Unseeded Evolved Senet Players vs� Random Players	 Population
��	 ���

Generations

0

50

100

150

200

HC1 HC2 HC3 HC4 HC5

N
um

be
r

of
 V

ic
to

rie
s

by
 E

vo
lv

ed
 P

la
ye

rs

Baseline Player

Evolved Players vs. Baseline Players, 100g512p

One
Two

Three
Four

Figure ���� Unseeded Evolved Senet Players vs� Handcrafted Heuristics	 Population
��	

��� Generations

���� Results ��

0

50

100

150

200

Const RND1 RND2 RND3 RND4 RND5 RND6 RND7 RND8

N
um

be
r

of
 V

ic
to

rie
s

by
 E

vo
lv

ed
 P

la
ye

rs

Baseline Player

Evolved Players vs. Random Players, 200g512p

One
Two

Figure ���� Unseeded Evolved Senet Players vs� Random Players	 Population
��	 ���

Generations

0

50

100

150

200

HC1 HC2 HC3 HC4 HC5

N
um

be
r

of
 V

ic
to

rie
s

by
 E

vo
lv

ed
 P

la
ye

rs

Baseline Player

Evolved Players vs. Baseline Players, 200g512p

One
Two

Figure ���� Unseeded Evolved Senet Players vs� Handcrafted Heuristics	 Population
��	

��� Generations

���� Results ��

0

50

100

150

200

0 50 100 150 200 250 300 350 400

N
um

be
r

of
 V

ic
to

rie
s

by
 E

vo
lv

ed
 P

la
ye

r
(o

ut
 o

f 2
00

)

Generation

Best Individuals From Generation X, Population 256, vs. Test Players

Const
Random Players

HC1
HC2
HC3
HC4
HC5

Figure ���� Evolved Senet Players Every
 Generations vs� Heuristics	 Population �
�	 ���

Generations

0

50

100

150

200

0 50 100 150 200 250 300 350 400

N
um

be
r

of
 V

ic
to

rie
s

by
 E

vo
lv

ed
 P

la
ye

r
(o

ut
 o

f 2
00

)

Generation

Best Individuals From Generation X, Population 512, vs. Test Players

Const
Random Players

HC1
HC2
HC3
HC4
HC5

Figure ����� Evolved Senet Players Every
 Generations vs� Heuristics	 Population
��	

��� Generations

���� Results ��

0

50

100

150

200

Const Random HC1 HC2 HC3 HC4 HC5

A
ve

ra
ge

 N
um

be
r

of
 V

ic
to

rie
s

by
 E

vo
lv

ed
 P

la
ye

rs

Baseline Player

Best of 256 Population vs. Best of 512 Population, Senet

256
512

Figure ����� Comparison of Winning Senet Individuals Evolved for �
� Generations vs�
��

Generations

���� Results ��

������� Othello

We evolved a total of �� populations of Othello players with purely random initial popula�

tions� Seven of them had populations of size �
� and the other seven had populations of size

��� For each of those population sizes	 four individuals were evolved for ��� generations	

two for ��� generations	 and one for ��� generations�

Against the randomly generated individuals and Const	 they all performed reasonably

well	 typically winning about �
� or so of games played against those individuals	 as can

be seen in Figures ����	 ����	 ����	 ����	 ����	 and ����� Against the handcrafted baseline

players	 performance was not particularly good	 with none of the evolved individuals typi�

cally winning more than half the games against any of the baseline players� These results

can be observed in Figures ����	 ���
	 ����	 ����	 ����	 and �����

Figures ����	 and ���� show how the best individuals in those two populations changed

over the course of ��� generations� In both cases	 the rate of improvement slows down

relatively early in the run� In Figure ����	 we can observe erratic but somewhat consistent

improvement until between generations
� and ���	 where improvement	 for the most part	

levels o� and performance remains fairly steady for the remainder of the run	 with the

exception of a couple of �spikes� of bad performance� Figure ���� shows similarly erratic

yet somewhat consistent improvement until around generation
�� In both graphs	 the

improvement is most visible against Const and the random players� An apparent anomaly

which can be observed in Figure ���� is that the best individual at generation
 shows

much better performance across the board than just about all the best individuals from

subsequent generations� It seems reasonable to conclude that this formulation does not do

a particularly good job of preserving the best individuals in a population� On the other

hand	 the short lifespan of the individuals represented by the spikes in Figures ���� and

���� demonstrates that the �tness function is good enough to insure that such individuals

do not persist long enough to dominate the population�

���� Results ��

0

50

100

150

200

Const RND1 RND2 RND3 RND4 RND5 RND6 RND7 RND8

N
um

be
r

of
 V

ic
to

rie
s

by
 E

vo
lv

ed
 P

la
ye

rs

Baseline Player

Evolved Players vs. Random Players

one
two

three
four

Figure ����� Unseeded Evolved Othello Players vs� Random Players	 Population �
�	 ���

Generations

0

50

100

150

200

OHC1 OHC2 OHC3 OHC4 OHC5

N
um

be
r

of
 V

ic
to

rie
s

by
 E

vo
lv

ed
 P

la
ye

rs

Baseline Player

Evolved Players vs. Baseline Players

two
three

one
four

Figure ����� Unseeded Evolved Othello Players vs� Handcrafted Heuristics	 Population �
�	

��� Generations

���� Results �

0

50

100

150

200

Const RND1 RND2 RND3 RND4 RND5 RND6 RND7 RND8

N
um

be
r

of
 V

ic
to

rie
s

by
 E

vo
lv

ed
 P

la
ye

rs

Baseline Player

Evolved Players vs. Random Players

one
two

Figure ����� Unseeded Evolved Othello Players vs� Random Players	 Population �
�	 ���

Generations

0

50

100

150

200

OHC1 OHC2 OHC3 OHC4 OHC5

N
um

be
r

of
 V

ic
to

rie
s

by
 E

vo
lv

ed
 P

la
ye

rs

Baseline Player

Evolved Players vs. Baseline Players

one
two

Figure ���
� Unseeded Evolved Othello Players vs� Handcrafted Heuristics	 Population �
�	

��� Generations

���� Results ��

0

50

100

150

200

Const RND1 RND2 RND3 RND4 RND5 RND6 RND7 RND8

N
um

be
r

of
 V

ic
to

rie
s

by
 E

vo
lv

ed
 P

la
ye

rs

Baseline Player

Evolved Players vs. Random Players

one
two

three
four

Figure ����� Unseeded Evolved Othello Players vs� Random Players	 Population
��	 ���

Generations

0

50

100

150

200

OHC1 OHC2 OHC3 OHC4 OHC5

N
um

be
r

of
 V

ic
to

rie
s

by
 E

vo
lv

ed
 P

la
ye

rs

Baseline Player

Evolved Players vs. Baseline Players

one
two

three
four

Figure ����� Unseeded Evolved Othello Players vs� Handcrafted Heuristics	 Population
��	

��� Generations

���� Results ��

0

50

100

150

200

Const RND1 RND2 RND3 RND4 RND5 RND6 RND7 RND8

N
um

be
r

of
 V

ic
to

rie
s

by
 E

vo
lv

ed
 P

la
ye

rs

Baseline Player

Evolved Players vs. Random Players

one
two

Figure ����� Unseeded Evolved Othello Players vs� Random Players	 Population
��	 ���

Generations

0

50

100

150

200

OHC1 OHC2 OHC3 OHC4 OHC5

N
um

be
r

of
 V

ic
to

rie
s

by
 E

vo
lv

ed
 P

la
ye

rs

Baseline Player

Evolved Players vs. Baseline Players

one
two

Figure ����� Unseeded Evolved Othello Players vs� Handcrafted Heuristics	 Population
��	

��� Generations

���� Results ��

0

50

100

150

200

0 50 100 150 200 250 300 350 400

N
um

be
r

of
 V

ic
to

rie
s

by
 E

vo
lv

ed
 P

la
ye

r
(o

ut
 o

f 2
00

)

Generation

Best Individuals From Generation X, Population 256, vs. Test Players

Const
Random Players

OHC1
OHC2
OHC3
OHC4
OHC5

Figure ����� Evolved Othello Players Every
 Generations vs� Heuristics	 Population �
�	

��� Generations

0

50

100

150

200

0 50 100 150 200 250 300 350 400

N
um

be
r

of
 V

ic
to

rie
s

by
 E

vo
lv

ed
 P

la
ye

r
(o

ut
 o

f 2
00

)

Generation

Best Individuals From Generation X, Population 512, vs. Test Players

Const
Random Players

OHC1
OHC2
OHC3
OHC4
OHC5

Figure ����� Evolved Othello Players Every
 Generations vs� Heuristics	 Population
��	

��� Generations

���� Results ��

0

50

100

150

200

Const Random OHC1 OHC2 OHC3 OHC4 OHC5

A
ve

ra
ge

 N
um

be
r

of
 V

ic
to

rie
s

by
 E

vo
lv

ed
 P

la
ye

rs

Baseline Player

Best of 256 Population vs. Best of 512 Population, Othello

256
512

Figure ����� Comparison of Winning Othello Individuals Evolved for �
� Generations vs�

�� Generations

����� Initial Populations with Seed Individuals

������� Senet

We evolved �ve populations of �
� individuals for ��� generations� Each initial population

contained ��� randomly generated individuals and eight seed individuals� The seed indi�

viduals were two copies each of HC�	 HC�	 HC�	 and HC
� For each run	 the randomly

created part of the initial population was di�erent than any of the others�

Against the randomly generated and randomly moving individuals	 the best individuals

�once again	 the winners of the last tournament of the last generation� from these popu�

lations performed extremely well	 with some individuals scoring a perfect ��� out of ���

games played against some of the test players� For the most part	 these individuals were

typically winning between ��� and ��� of their games against the random individuals�

Detailed results can be seen in Figure ����� Against the handcrafted heuristics from which

���� Results ��

0

50

100

150

200

Const RND1 RND2 RND3 RND4 RND5 RND6 RND7 RND8

N
um

be
r

of
 V

ic
to

rie
s

by
 E

vo
lv

ed
 P

la
ye

rs

Baseline Player

Evolved Players vs. Random Players, 100g256p

One
Two

Three
Four
Five

Figure ����� Seeded Evolved Senet Players vs� Random Players

these individuals were evolved	 performance remained very good	 as can be seen in Figure

����� Individuals typically won around �
� to ��� of games against these test heuristics�

������� Othello

We evolved two populations of �
� individuals for ��� generations� Each initial population

contained ��� randomly generated individuals and eight seed individuals� The seed indi�

viduals were two copies each of OHC�	 OHC�	 OHC�	 and OHC
� �The slow running time

of our implementation precluded more than two runs of this experiment��

Against the randomly generated baseline players and the randomly moving player	 the

winning individuals from these populations performed reasonably well	 typically winning

about ��� to �
� of the time	 as can be seen in Figure ����� Figure ���� shows that

against the handcrafted baseline players	 performance was not good at all� For the most

part	 the winning individuals from these seeded populations did considerably worse than

the seeds�

���� Results ��

0

50

100

150

200

HC1 HC2 HC3 HC4 HC5

N
um

be
r

of
 V

ic
to

rie
s

by
 E

vo
lv

ed
 P

la
ye

rs

Baseline Player

Evolved Players vs. Baseline Players, 100g256p

One
Two

Three
Four
Five

Figure ����� Seeded Evolved Senet Players vs� Handcrafted Heuristics

0

50

100

150

200

Const Random HC1 HC2 HC3 HC4 HC5

A
ve

ra
ge

 N
um

be
r

of
 V

ic
to

rie
s

by
 E

vo
lv

ed
 P

la
ye

rs

Baseline Player

Unseeded Winners vs. Seeded Winners, Senet

Seeded
Unseeded

Figure ���
� Comparison of Winning Senet Individuals Evolved With Seeds to Those

Evolved Without Seeds

���� Results ��

0

50

100

150

200

Const RND1 RND2 RND3 RND4 RND5 RND6 RND7 RND8

N
um

be
r

of
 V

ic
to

rie
s

by
 E

vo
lv

ed
 P

la
ye

rs

Baseline Player

Evolved Players vs. Random Players

one
two

Figure ����� Seeded Evolved Othello Players vs� Random Players

0

50

100

150

200

HC1 HC2 HC3 HC4 HC5

N
um

be
r

of
 V

ic
to

rie
s

by
 E

vo
lv

ed
 P

la
ye

rs

Baseline Player

Evolved Players vs. Baseline Players

one
two

Figure ����� Seeded Evolved Othello Players vs� Handcrafted Heuristics

���� Results ��

0

50

100

150

200

Const Random OHC1 OHC2 OHC3 OHC4 OHC5

A
ve

ra
ge

 N
um

be
r

of
 V

ic
to

rie
s

by
 E

vo
lv

ed
 P

la
ye

rs

Baseline Player

Unseeded Winners vs. Seeded Winners, Othello

Seeded
Unseeded

Figure ����� Comparison of Winning Othello Individuals Evolved With Seeds to Those

Evolved Without Seeds

�

Conclusion

��� Contributions

We have shown that using genetic programming has the potential for being a viable tech�

nique for devising board evaluation functions� The genetic programming framework enables

the functions to evolve towards whatever organizational structure is best suited to the prob�

lem at hand	 without being limited to simple linear combinations of features� It is possible

to incorporate any features desired into this framework easily either by including them in

the non�terminal and terminal set or by including some number of seed individuals in the

initial population�

We devised a testing procedure to evaluate the quality of the results of the evolutionary

process� This testing mechanism is independent of the �tness function� Using this mecha�

nism	 we were able to show that for the game of Senet	 players were evolved which play the

game convincingly well� For the game of Othello	 the evolved players were able to defeat

random players a majority of the time	 although against more sophisticated players they en�

countered some trouble� These results did show that the GP formulation for evolving board

evaluation functions can be used e�ectively for more than one game	 which we believe to

be evidence of its general applicability�

Every individual in our formulation is a feasible player of the game for which it is being

��

���� Future Work �

used� Formulating each individual as a board evaluation function enables us to avoid the

issue of infeasible individuals completely� A default behavior was devised to deal with the

condition of multiple �best� board con�gurations�

We experimented with population seeding	 adding a small number of handcrafted indi�

viduals to our base population� In the case of Senet	 the result of this was the evolution of

individuals who outperformed both the seed individuals and the individuals evolved from

purely random initial populations� In the case of Othello	 some performance improvement

over the individuals evolved from purely random initial populations was evident	 while

improvement over the seed individuals was conspicuous by its absence�

We observed certain population dynamics of interest as evolution progressed� In the

cases of both Senet and Othello	 after a point the quality of the winning individuals of

each generation began to stagnate� In both cases	 relatively low quality individuals would

sometimes win the �tness tournament for a generation	 only to return to obscurity shortly

thereafter� In a few cases	 particularly with Othello	 relatively high quality individuals

would win the �tness tournament and then apparently fade away	 with the winners of

subsequent generations displaying inferior performance�

��� Future Work

There are a number of possible future extensions of this work under consideration� A nice

feature of Samuel�s work is that it can learn from directly playing a human player� A

disadvantage of this work is that once the evolutionary process completes	 the players are

unchanging� As a result	 after playing a given player a number of times	 it can become

predictable and easier to defeat� Devising a mechanism to enable the evolved players to

improve as a result of play against humans would help circumvent this problem and make

the evolved players more challenging opponents�

An interesting extension to this work would be to experiment with better ways of better

preserving higher quality players while still maintaining the good properties of the �tness

���� Future Work ��

function� A possible cause of this problem may be the disruptive nature of the genetic

operators we implemented� The mutation rate is relatively high	 and most of each new

population is created by crossover rather than reproduction� Consequently	 the selection

mechanism may give too low a chance for good individuals to reproduce themselves�

It is also possible that the tournament structure for �tness evaluation may need some

modi�cation� For instance	 perhaps more than four games should be played at each level

of the tournament� Another possibility to consider is the issue of what the system should

do when more than one board position gets the best evaluation number� Currently	 each of

those positions has the same probability of getting selected in that circumstance� It may

be worthwhile to experiment with a deterministic strategy for handling this problem� The

non�deterministic approach appeared to work well with Senet	 but that game has an element

of chance which is absent from Othello� In general	 more experimentation could probably

provide more insight in improving the results obtained from this general approach�

As was discussed in the results section	 varying the parameters of the formulation might

be a route to better results	 particularly for Othello� Altering the default behavior invoked

in the case of multiple board evaluations returning the same number is one possibility�

Altering the tournament framework is another� In general	 �nding ways of accelerating the

speed of the evolutionary process would be very helpful in giving us the opportunity to run

more experiments with a wider range of parameters�

Another possible extension would be to improve the non�terminal and terminal set

used in the Othello formulation� The only operator currently in place to evaluate stability

works by checking to see how many corners are occupied	 as corners are always guaranteed

stable� Incorporation of additional stability operators could well improve performance	 as

the Othello literature makes it clear that this is a strategic consideration of paramount

importance�

A

The Rules of Senet

The original rules of Senet are presently unknown	 but a good approximation of what they

were like is not impossible to �nd� Versions of the game have been found with anywhere

from
 to �� pieces per side	 although � pieces per side appears most common	 and is the

number used for each side in this implementation� For this implementation of Senet	 the

rules were based upon the rules developed by Timothy Kendall for a version of Senet he

published as a boardgame ����� Here is a summary of Kendall�s rules	 paraphrased directly

from his rule booklet�

Set�up The � spools and the � cones are set up alternating with each other in the �rst

�� squares of the board� The pieces advance in an S�shaped course along the board	

going left�to�right in the �rst row	 right�to�left in the second row	 and left�to�right

again in the third row� A picture of the Senet board at the start of the game can be

seen in �gure A���

Objective To move all of one�s pieces o� the board before one�s opponent succeeds in

doing so�

Determining the Moves There are � throw�sticks used in the game	 each one of them

bearing a marked and an unmarked side� There are
 possible resulting con�gurations	

��

��

which have the following results� �� � marked side up	 � � unmarked side up�

����� Move one house and get an extra throw�

����� Move two houses� End of turn�

����� Move three houses� End of turn�

����� Move four houses and get an extra throw�

����� Move �ve houses and get an extra throw�

A player should not move until all throws are completed� When the throwing is done	

the throws may be used in any order or combination desired	 one at a time� Once a

throw is used	 it is gone�

The opening move The players alternate throwing the sticks	 handing them over to the

other player upon a throw of � or �� The �rst player to throw a � has the cones as his

pieces and moves �rst� His opponent has the spools as his pieces and begins playing

on the next turn�

Moving	 Hitting	 and Defending Since no two pieces may simultaneously occupy the

same house	 a player may only move a piece on his turn to a vacant house or a house

occupied by an undefended enemy piece� A defended piece is a piece which has at

least one of its friends in a house either immediately preceding or following it� When

an undefended piece is hit	 it trades places with the opposing piece which attacked it�

Forced Moves If a player cannot use a throw to move a piece forward	 then he must move

the piece backward the appropriate number of houses� If this causes the piece to land

on an opposing piece	 defended or not	 the opposing piece gets to move forward at

the original piece�s expense� If there are no possible backward moves	 the remaining

throws are forfeit�

Endplays To bear pieces o� the board	 the player must deal with special rules governing

movement through houses �� to ��� To move a piece beyond house �� �the �Beautiful

��

Water
Square

Figure A��� The Senet Board

House��	 it must �rst land there by exact count� It may be subsequently carried

forward as follows� On a throw of�

� Bear o� at once�

�� Move to house ��� Bear o� on any future throw�

�� Move to house ��� Bear o� on a future throw of ��

�� Move to house ��� Bear o� on a future throw of ��

None of a player�s pieces can be borne o� the board until the player has completely

vacated the �rst ten squares� Once a piece makes it into one of the above houses	 it

is no longer required to travel backwards as described earlier�

The Water House This house is a pitfall that should be avoided if possible� A piece can

land here either by moving � from house �� �usually avoided	 since a throw of � always

enables another throw� or by getting bumped there by an opponent going from house

�� to one of the end houses� When a player has a piece in this house	 he loses a

turn� If he throws a � on his next turn	 he may bear the drowned piece o� the board�

Otherwise	 the drowned piece is transported to house �
	 the �House of Repeating

Life�	 or the nearest vacant house preceding it� In addition	 while a player�s piece is

drowned	 none of his other pieces are considered defended�

�

As previously mentioned	 the above rules are based upon Kendall�s published version of

Senet� A few rules were very slightly changed to simplify some of the programming� The

above set of rules is what was implemented�

B

The Rules of Othello

Othello is a two player game of strategy which bears some relation to the Go family of

games	 in that the emphasis is on capturing territory through the process of surrounding

opponent�s pieces� It is played on an � � � board	 with a set of discs which are black on

one side and white on the other side� In the initial board con�guration	 white owns the two

central squares on the main diagonal and black owns the two central squares on the minor

diagonal� This is shown in �gure B��� Players take turns moving until neither side has a

legal move	 with black playing �rst� When the game ends	 the player possessing the largest

number of discs is declared the winner�

A move is made by placing a disc on the board	 with the player�s color facing up�

In order for the move to be legal	 the square must be empty prior to making the move

and placing the disc must capture at least one of the opponent�s discs� Enemy discs are

captured by bracketing them between the disc being played and an existing disc belonging

to the player� The player�s discs must be immediately adjacent to the enemy discs on both

sides� Bracketing can occur in a straight line in any of the eight directions and consists

of an arrangement starting with one of the player�s discs	 immediately followed by one or

more of the opponent�s discs	 followed by the disc now being played� All of the bracketed

discs are captured from the enemy player�s color to the current player�s color� A placement

�

�

Figure B��� The Othello Board

of a disc can result in �ips occurring in multiple directions�

When a player has no legal moves available	 the turn is forfeited and the other player

gets to move� When neither player has a legal move	 the game ends and the score is totalled�

Normally	 this occurs when the board has been completely �lled with pieces	 although this

is not necessarily the case�

C

Computerized Othello Playing

This appendix is based on the work described in two major papers discussing computer�

ized Othello players	 namely Rosenbloom�s program Iago ���� and the program of Lee and

Mahajan	 Bill ��
��

C�� Basic Othello Strategy

C���� Trivial Othello Strategies

The most obvious strategy is to try to greedily accomplish the top�level Othello goal of

having more pieces than one�s opponent� This seemingly intuitive strategy works pretty

badly in practice� Taking squares without regard to their strategic value often spells doom

in Othello� This leads to the second simple strategy	 that of weighting the squares depending

on their typical strategic value� Its failings are twofold� there are more important reasons

for taking or avoiding squares than just their location	 and the value of a location may

change during the course of play�

�

C��� Basic Othello Strategy
�

C���� Mobility and Stability

Certain strategic considerations have been shown to be of immense value when utilized in

computer Othello players� Two of the most studied strategic considerations are mobility

and stability ���� ��
�� For example	 a failing encountered by both of the above strategies

is that they tend to sacri�ce mobility for the sake of more pieces or possessing a certain

location� Mobility is an important strategic concern in Othello	 since a lack of �exibility in

choice of moves tends to reduce the possible number of good moves a player can make	 which

tends to result in the deterioration of the player�s position� In the extreme case a player

with no mobility is unable to move and can readily be abused by its opponent� There is

more to mobility than maximizing the di�erence in the current number of moves available

to the players	 in that having a large number of bad moves available is not necessarily

any better than having a small number of bad moves from which to choose� Additionally	

maximizing long�term mobility advantage may involve examination of board features other

than mobility�

As the game closes	 maximizing the disc di�erential becomes a paramount concern�

However	 �ipping a disc over does little good if an opponent can soon thereafter �ip it right

back� Hence the importance of analyzing the stability of discs� A disc which is completely

stable can never be recaptured by an opponent�

To prove that a disc is stable	 it must be shown that the disc can never be bracketed

on one side by an opposing piece and on the other side by a blank square �along the same

line�� An example of a stable piece is any occupied corner square� They are consequently

very important not only because of their own stability but additionally because they can

form an anchor by which other discs may become stabilized� This phenomenon is easiest to

see with the non�corner edge squares� The only line of possible instability is the edge itself	

so to remove this instability all that is needed is to have a stable disc of the same color

immediately adjacent along the edge� Internal discs are very di
cult to stabilize until late

in the game	 since there are four sources of potential instability for each disc� horizontal	

C��� Computing Othello Board Evaluation Functions

vertical	 and two diagonal�

C�� Computing Othello Board Evaluation Functions

C���� Computing Mobility

There are two ways of considering a player�s mobility for a particular board con�guration�

Current mobility considers which moves are legal in the present con�guration� Potential

mobility attempts to discern moves that may later become legal but are not yet so�

C������ Current Mobility

One approach to computing current mobility is to simply count all legal moves currently

available� One problem with this is that no distinction is made between �acceptable� and

�unacceptable� moves� This is a problem in that having seven possible moves all of which

yield a corner to the opponent is considered �better� by an algorithm not making this dis�

tinction than having three moves available with less disastrous consequences� Rosenbloom

���� discusses three possible approaches for dealing with this problem� One approach is to

search the game tree below each move� This is essentially just adding another search level

and if we assume that the search is already as deep as possible	 this approach is necessarily

too expensive� A second alternative is doing an a priori classi�cation of whether it is �ac�

ceptable� to move to a particular square� The alternative preferred by Rosenbloom is to

retain the simple count of the total number of legal moves and add a second measure which

eliminates moves which result in immediate surrender of a corner�

In Bill ��
�	 the computation of current mobility incorporates several additional criteria

for determining which moves are �acceptable� or �good�� These criteria include considering

whether a corner is captured or surrendered	 how many discs get captured �and in how many

directions�	 and whether those discs being captured are internal or on the frontier� First	

the total number of legal moves available in a position is counted	 and then penalties are

C��� Computing Othello Board Evaluation Functions
�

assessed based on whether some of those moves adversely a�ect the aforementioned criteria�

Both move counting and move penalty are calculated by a series of table lookups� A board

is represented for this purpose as �� numbers	 where each number is an index into a table

that represents a horizontal	 vertical	 or diagonal line on the board�

C������ Potential Mobility

In Iago ����	 the key idea for computing potential mobility is to �nd a string of the opponent�s

discs with an empty square at one end� This is useful because if there is a way for the current

player to place a disc at one end of this string of discs	 then a new move will be available

on the player�s next turn� Iago�s board evaluation function uses three measures to attempt

to determine the potential mobility of a given board con�guration� It adds together the

number of opponent discs next to empty squares	 the number of empty squares adjacent

to opponent discs	 and the sum of the number of empty squares adjacent to each of the

opponent�s discs� The combination of these measures gives Iago a pretty good idea of the

potential mobility of the board con�guration being examined�

In Bill ��
�	 potential mobility is computed in a manner similar to how current mobility

is computed� Tables are generated for each of the �� lines	 with bonuses given for each

enemy internal disc which is next to an empty space� The size of the bonus is naturally

dependent upon the desirability of the potential move	 using criteria similar to those used

in the current�mobility computation�

The sequence penalty is an additional computation used to supplement Bill�s mobility

estimation� It is based on the observation that it is in general not a good practice to have

long sequences of one�s own discs� They often hinder one�s mobility� Bill penalizes long

strings of discs for this part of its evaluation function� The penalties are pre�computed for

each con�guration of each of the �� possible lines	 as with the other mobility features of

Bill discussed above�

C��� Computing Othello Board Evaluation Functions
�

C���� Computing Stability

The simplest method for computing stability is to determine how many corner squares are

occupied	 as each of these squares is automatically stable once a disc is placed thereupon�

Other simple methods of computing stability involve determining which discs on an edge

are adjacent to discs of the same color which ultimately are adjacent to discs occupying

corners� Because of the large number of possibilities which begin to emerge	 Iago and Bill

rely upon tables for computing stability�

To compute edge stability	 Iago relies upon a precomputed table of all possible edge

con�gurations� It then evaluates each edge by looking it up in the table	 which will contain

the stability value of that particular con�guration� With a total of �
�� ���� possible edge

con�gurations	 a lookup table is not an unreasonable approach� This table gets precomputed

using an iterative algorithm� The table is initialized with a set of static values depending on

the location and stability of each disc in each con�guration� Each iteration of this algorithm

starts with a completely �lled con�guration and works backwards to intermediate positions

by removing discs� The intermediate positions are evaluated by computing the expected

value of the position� For each empty square	 the value of playing there is multiplied by

the probability of being able to legally make that move to determine the overall value of

that con�guration� An iteration is complete when a value has been assigned to the empty

con�guration� The table resulting from this process is used by �nding the entry for the

current edge position in the table	 and returning the value corresponding to that entry to

the board evaluation function�

Computing internal stability is rather di
cult	 so Iago uses a somewhat ad�hoc algorithm

that checks for a subclass of stable internal squares� The algorithm essentially checks to see

if there is a friendly stable disc in each of the four potential directions from which it could

potentially be captured� The author notes that the utility of this algorithm is marginal	 in

that this particular subclass of stable internal squares is not large�

The edge evaluation process used by Bill is reminiscent of Iago�s	 except that the authors

C��� Computing Othello Board Evaluation Functions
�

of Bill decided to include the �X squares� as part of the edge in their lookup table� The �X

squares� are the four squares on the Othello board diagonally adjacent to the corner squares�

Each edge in Bill�s lookup table contains �� squares� the eight squares which comprise the

edge itself	 and the �X squares� corresponding to each corner in the edge� Consequently	

Bill�s edge lookup table contains
���� ����� entries� Including the �X squares� compensates

for weaknesses in Iago�s edge evaluation function resulting from the fact that these squares

are an excellent staging ground for corner attacks� To compute the edge table	 an algorithm

resembling that of Iago�s is used	 which recursively searches every possible edge position to

determine its value	 using probabilistic weights in a manner similar to Iago� Bill does not

bother with any computations of internal stability	 given the observation in Iago that it was

of little real value and also given the more general observation that the key to achieving

stable internal discs is to stabilize the edges�

C���� Complete Board Evaluation Functions

Based on the considerations of mobility and stability	 Rosenbloom formulated a single board

evaluation function for his Iago program� It is a linear polynomial constructed from four

terms representing edge stability	 internal stability	 current mobility and potential mobility

each multiplied by various coe
cients which can change depending on the number of the

current turn� The edge stability coe
cient is particularly large� The coe
cients in Iago

were selected by �rst assigning values based on opinions of the relative importance of the

terms� A small set of variations on these coe
cient values was evaluated by having the

di�erent versions of Iago play against each other� The best variation became the o
cial

Iago evaluation function�

Bill�s evaluation function is composed of terms representing edge stability	 current mo�

bility	 potential mobility	 and the �sequence penalty�� As described above	 computation of

all of these features is done by table�based algorithms for the sake of speed�

To combine these four features	 Bayesian learning ��� is used to combine the features

C��� Computing Othello Board Evaluation Functions
�

�optimally� into a quadratic polynomial� This technique is often used in pattern recognition

to classify an image based on features extracted from it� In the case of Othello	 a board

position is classi�ed as a �win� or �loss� based on features extracted from the board� The

algorithm for training has four steps� First	 a large database of training positions was

generated� This was achieved using an earlier version of Bill� Second	 these positions were

labeled as winning or losing	 depending upon whether the player who won or the player who

lost made the move which generated the position being examined� Third	 a discriminant

function was computed from the labeled data� This function attempts to recognize feature

patterns that represent winning or losing positions� Given the feature vector for a position	

it assigns a probability that the position is a winning one� Finally	 di�erent classi�ers are

built for di�erent stages of the game�

The training positions were generated by an earlier version of the Bill program	 Bill

���� Bill ����s evaluation function combined the features given above linearly	 tuning the

coe
cients by playing against Iago� Bill ��� was the winner of several computer Othello

tournaments	 and was thus considered an expert Othello player by its authors� Using Bill

��� to generate training positions thus guaranteed that all of the generated positions come

from expert games	 according to the authors� For training purposes	 the game of Othello

was divided into stages by observing that there are nearly always �� moves per game�

Consequently	 �� discriminant functions were generated	 with each one being generated

from training data with plus or minus two discs� This coalescing of adjacent data makes

the discriminant function slow�varying� To compute the discriminant function itself	 the

feature vector gets extracted from each position� The mean feature vector and covariance

matrix are then computed for the win and loss classes� The quadratic discriminant function

is a polynomial combination of the feature vector �containing the four features Bill uses

which were discussed above�	 the covariance matrix	 and the mean feature vectors for wins

and losses�

C��� Conclusion ��

C�� Conclusion

Bill and Iago have both performed impressively� Iago was victorious in the Santa Cruz Open

Machine Othello Tournament ��� without losing a single game against an international �eld

of computer Othello programs� Jonathan Cerf	 who was at the time the current Othello

world champion	 stated in a review of the tournament �
� that �In my opinion the top

programs from Santa Cruz are now equal �if not superior� to the best human players�� In

that same article	 he goes on to state�

I understand Paul Rosenbloom is interested in arranging a match �for Iago�

against me� Unfortunately	 my schedule is very full	 and I�m going to see that

it remains that way for the foreseeable future�

Bill ���	 which is the version of Bill described above	 defeated Brian Rose	 who at the

time was the highest rated American Othello player	 by a score of
���� Against Iago	 Bill

��� did not lose a single game� Lee and Mahajan do not state the total number of games

played between the two programs�

Given the performance of Iago and Bill	 and given the features of Othello emphasized in

their board evaluation functions	 it would seem that the principal strategic considerations

to be considered in Othello are stability and mobility� The use of tables facilitates accessing

large amounts of precomputed useful strategic information quickly enough to be useful in

play�

D

Other Methods for Evolving Game Players

A number of researchers have previously applied evolutionary approaches to the problem of

playing a boardgame� Angeline and Pollack ��� used genetic programming to evolve com�

puter programs which played the game tic�tac�toe� This project did not	 strictly speaking	

evolve board evaluation functions	 since the programs also were responsible for �physically�

moving pieces on the board� This allowed the possibility that a player would fail to move a

piece on its turn	 which adds the potentially undesirable possibility of infeasible individuals

who don�t actually move on every turn	 thus not playing a legal game�

Rosin and Belew ���� used a coevolving method for creating tic�tac�toe players� One

population was the host	 and the other the parasite� Fitness for the host population is

evaluated by having each member of the host population play against some number of

individuals from the parasite population� The populations then trade roles	 so that the

members of the �former� parasite population can have their �tness evaluated� To represent

tic�tac�toe players	 they represent every legal	 reachable board position in the genome� Even

eliminating redundant positions �due to symmetry�	 the genome still has
�� positions� Each

position is represented as a � digit base � number	 with a � digit representing an empty

square	 a � to indicate an opponent occupation	 and a � indicating that this player holds

the square� Each gene in the genome takes on a number of allele values equal to the number

��

��

of open squares in the corresponding position� This uniquely speci�es a legal move from

each position�

The Rosin�Belew representation described above has the advantage of being �xed in

size	 thus avoiding memory consumption problems sometimes experienced using genetic

programming ���� However	 using computer programs as the representation allows for much

greater scalability	 in that a program doesn�t have to internally represent every possible

board position� It is di
cult to imagine using the Rosin�Belew representation for a game

such as chess	 for instance�

Another more conventional genetic algorithm representation is that used by Sun and Wu

���� for the game of Othello� They evolved the numerical coe
cients of a linear board evalu�

ation function� The terms of the function are features of the current state of the game� In a

previous paper ���� they mention that the features used are a board position measurement	

current mobility	 stability	 and two versions of potential mobility� This problem formulation

means that the evaluation function will necessarily be a linear polynomial	 which limits the

�exibility of possible evaluation functions that can be evolved by this method�

In order to evaluate the �tness of individuals	 each individual played one game against

each of �ve �coaches�� The coaches were pre�selected expert Othello evaluation functions�

The �tness of each individual was the sum of the square advantages of the �ve games�

After around �� generations	 the original coaches get replaced by the best individuals in the

population	 and as time marches on those new coaches in turn get replaced by new superior

individuals from the population being evolved�

Moriarty and Miikkulainen used an approach based on the arti�cial evolution of neural

networks to develop a board evaluation function for Othello ����� The networks were a�orded

no search mechanism	 and consequently were forced to rely solely on pattern recognition of

the current board con�guration to achieve good play� Fitness was evaluated by playing each

individual against a standard opponent� The �tness value was the number of games out of

ten in which the individual emerged victorious� The networks were �rst evolved against a

��

player which moved randomly	 and subsequently against a player utilizing three levels of

alpha�beta search with a positionally based evaluation function� No preselected features of

any sort were presented to the individuals�

After the evolutionary process was complete	 analysis of the play of the top individuals

demonstrated that they had independently developed a mobility�based strategy for Othello

play� They evidenced this strategic behavior not only against the individual against which

they were evolved	 but also against other players� A top Othello player agreed that the

individuals evolved using this scheme were fairly impressive considering that they started

with random initial weights�

The principal weakness of using a neural network based representation is that if it is

considered desirable to incorporate preselected game features	 there is no straightforward

mechanism present for doing so� The principal method available would be to insure that

at least some of the individuals in the initial population have been trained in Othello play

by some other means� Thus	 an advantage of the genetic programming formulation is that

features are easily incorporated as desired simply by placing them in the function and

terminal set�

E

Sets of Terminals and Non�terminals

E�� Non�terminals and Terminals Common to Both Games

� Arithmetic Operators� The arithmetic operators plus	 minus	 and times are avail�

able in both games� They each take two arguments and return the sum	 di�erence	 or

product�

� Decision Operator� The if operator takes three arguments� a condition and two

possible actions� If the condition reduces to � �i�e� false� the second action is taken	

otherwise the �rst action is taken�

� Logical Operators� The and	 or	 and not operators take two arguments and return

an integer representing the appropriate logical combination of those arguments�

� Integers� The terminal sets of both games contain the integers from � to the number

of board locations minus ��

E�� Non�terminals and Terminals Speci�c to Senet

� Throws Left� The terminals ��left�	 ��left�	 ��left�	 ��left�	 and ��left�

return how many of each sort of throw the current player has remaining�

��

E��� Non�terminals Speci
c to Othello �

� Move Information� The terminals get�start and get�distance�moved report

information on the move the function just made�

� Data on Pieces� The terminals self�pieces�left� and foe�pieces�left� re�

port how many pieces a player has remaining� The terminals self�drowned� and

foe�drowned� report whether a player has landed a piece on the water pitfall� The

non�terminals self�nth�piece� and foe�nth�piece� take one argument n and

return the board location of piece n of the appropriate player�

� Data on Board Locations� The non�terminals occupied�	 friend�	 foe�	 and

defended� take one argument which is a board location and return a value indicating

whether that predicate is true for that board location�

E�� Non�terminals Speci�c to Othello

� Comparison Operators� The non�terminals �	 �	 and � compare their two argu�

ments and return � if the test is true and � if it is false�

� Data on Board Locations� The non�terminals empty�	 me�	 enemy�	 legal�self�move�	

and legal�enemy�move� take one argument which is a board location and return a

value indicating whether that predicate is true for that board location�

� Data on General Game State� The non�terminals num�legal�moves and num�pieces

take one argument which if an odd number refers to the current player�s opponent

and if an even number the player proper� They then return the appropriate number	

as their names imply�

� Stability Data� This terminal was absent from the �rst round of Othello experi�

ments� The num�corners�occupied non�terminal takes one argument which if odd

refers to the opponent and if even the current player� This non�terminal then returns

the total number of corners occupied by the indicated player�

Bibliography

��� Peter J� Angeline and Jordan B� Pollack� Competitive environments evolve better

solutions for complex tasks� In Proceedings of the Fifth International Conference on

Genetic Algorithms	 pages �������	 �����

��� J� E� Baker� Reducing bias and ine
ciency in the selection algorithm� In Proceedings

of an International Conference on Genetic Algorithms and Their Applications	 ���
�

��� Avron Barr and Edward A� Feigenbaum� The Handbook of Arti�cial Intelligence� Vol�

ume �� William Kaufmann	 Inc�	 �����

��� Hans Berliner� On the construction of evaluation functions for large domains� In

Proceedings of the International Joint Conference on Arti�cial Intelligence	 pages
��

	 �����

�
� Jonathan Cerf� Machine vs� machine� Othello Quarterly	 ����������	 �����

��� R� Duda and P� Hart� Pattern Classi�cation and Scene Analysis� Wiley	 New York	

�����

��� Gabriel J� Ferrer and Worthy N� Martin� Using genetic programming to

evolve board evaluation functions� In Proceedings of the ���� IEEE Conference

on Evolutionary Computation	 pages �����
�	 Perth	 Australia	 November ���
�

http�

www�cs�virginia�edu
�gjf�a
work
papers
senet�ps�

��

Bibliography��

��� P� W� Frey� The Santa Cruz open Othello tournament for computers� BYTE	 ��������

��	 �����

��� J� Grefenstette� Incorporating problem speci�c knowledge into genetic algorithms� In

L� Davis	 editor	 Genetic Algorithms and Simulated Annealing	 �����

���� John H� Holland� Adaptation in Natural and Arti�cial Systems� University of Michigan

Press	 ���
�

���� Timothy Kendall� Passing Through the Netherworld� Kirk Game Company	 �����

���� John R� Koza� Hierarchical genetic algorithms operating on populations of computer

programs� In Proceedings of the ��th Joint Conference on Arti�cial Intelligence	 pages

�������	 �����

���� John R� Koza� Genetic Programming� On the Programming of Computers by Means

of Natural Selection� MIT Press	 �����

���� John R� Koza� Genetic Programming II� Automatic Discovery of Reusable Programs�

MIT Press	 �����

��
� Kai�Fu Lee and Sanjoy Mahajan� The development of a world�class othello program�

Ariti�cial Intelligence	 ��������	 �����

���� David Levy� Computer Gamesmanship� Simon and Schuster	 Inc�	 �����

���� David E� Moriarty and Risto Miikkulainen� Discovering complex othello strategies

through evolutionary neural networks� Connection Science	 �������
����	 ���
�

���� Paul S� Rosenbloom� A world�championship�level Othello program� Arti�cial Intelli�

gence	 ����������	 �����

Bibliography��

���� Christopher D� Rosin and Richard K� Belew� Methods for competitive co�evoltion�

Finding opponents worth beating� In Proceedings of the �th International Conference

on Genetic Algorithms	 pages �������	 University of Pittsburgh	 July ���
�

���� Arthur Samuel� Some studies in machine learning using the game of checkers� IBM

Journal of Research and Development �	 pages �������	 ��
��

���� C� E� Shannon� Programming a computer for playing chess� Philosophical Magazine	

����
����
	 March ��
��

���� Chuen�Tsai Sun	 Ting�Hong Liao	 Jing�Yi Lu	 and Fu�May Zheng� Genetic algorithm

learning in game playing with multiple coaches� In Proceedings of the ���	 IEEE

Conference on Evolutionary Computation	 pages �������	 �����

���� Chuen�Tsai Sun and Ming�Da Wu� Self�adaptive genetic algorithm learning in game

playing� In Proceedings of the ���� IEEE Conference on Evolutionary Computation	

pages �������	 Perth	 Australia	 November ���
�

���� Richard S� Sutton� Learning to predict by the methods of temporal di�erences� Machine

Learning	 ������	 �����

��
� Astro Teller� Turing completeness in the language of genetic programming with indexed

memory� In IEEE World Congress on Computational Intelligence	 �����

���� Gerald Tesauro� Temproal di�erence learning and TD�Gammon� Communications of

the ACM	 ������
����	 March ���
�

