
Anytime Replanning Using Local Subplan
Replacement

A Dissertation

Presented to

the faculty of the School of Engineering and Applied Science

University of Virginia

In Partial Fulfillment

of the requirements for the Degree

Doctor of Philosophy

Computer Science

by

Gabriel J. Ferrer

May 2002

Approvals

This dissertation is submitted in partial fulfillment of the requirements for the

degree of

Doctor of Philosophy

Computer Science

Gabriel J. Ferrer

Approved:

Worthy N. Martin (Advisor)

John A. Stankovic

Glenn S. Wasson

John C. Knight (Chair)

Gabriel Robins

Dennis R. Proffitt

Accepted by the School of Engineering and Applied Science:

Richard W. Miksad (Dean)

May 2002

Abstract

Planning is a very hard problem in general. Many interesting planning problems are

NP-Complete, PSPACE-Complete, or undecidable. Furthermore, in the context of a

planner being used to control a robot, events beyond the control of the robot may

occur that cause its plan to fail. When a plan fails, it is necessary to devise a new

plan that accommodates the exogenous event or events that caused the old plan to

fail. This new plan must be devised in a timely manner.

Anytime planners seek to allow the system to exchange execution time for solution

quality. I have analyzed how local subplan replacement can be utilized to implement

an anytime planning system that devises new plans to accommodate plan failures.

Local subplan replacement consists of selecting subsequences of operators centered

around failure points and replacing them with new subsequences of higher quality.

The key idea behind local subplan replacement is that it utilizes the results of the

search process that produced the original plan in order to guide the search for a new

plan.

An anytime planning algorithm requires two key components: the rapid generation

of an initial plan and a means for establishing a progression of improved plans. Local

subplan replacement begins by quickly reparing the flaws in the original plan. This

results in a plan that achieves all of its goals, but may be of low quality. Local subplan

replacement is then used to improve the quality of the plan. At low subplan levels,

iii

iv

short subplans are replaced. These replacements are generated relatively quickly. At

higher subplan levels, longer subplans are replaced. This requires more time, but

results in plans of higher overall quality.

My experimental results demonstrate that utilizing the results of the earlier search

process is effective for organizing anytime planning. I also describe some theoretical

and practical limitations of this approach and suggest directions for further research.

Contents

Abstract iii

Acknowledgements v

1 Introduction 1

1.1 The Planning Problem . 1

1.2 Thesis Statement . 4

1.3 Local Subplan Replacement . 5

1.4 Contributions . 5

1.5 Guide to This Dissertation . 7

2 The Planning Problem 8

2.1 Planning and Robotics . 8

2.2 Definition of the Planning Problem 9

2.2.1 Propositional STRIPS Planning 9

2.2.2 Plan Repair . 11

2.2.3 Anytime Planning . 12

2.3 Computational Complexity of Planning 13

2.3.1 Decidable and Undecidable Planning Problems 14

2.3.2 Tractable and Intractable Planning Problems 15

v

Contents vi

2.3.3 Restricting Goal Interactions 19

2.3.4 Plan Merging and Operator Restriction 20

2.3.5 Dead-End States . 22

2.3.6 Exponential Length Plans . 23

2.3.7 Polynomial Time Examples 23

2.4 Target Problems . 27

2.4.1 Target Problem Characteristics 27

2.4.2 Potential Target Problems . 30

2.5 The Repair Robot Domain . 32

2.5.1 Problem Description . 32

2.5.2 Formal Problem Definition . 34

2.5.3 Computational Complexity . 36

2.6 Summary . 42

3 Planning Systems 43

3.1 Domain-Independent Planning . 43

3.1.1 The STRIPS Planner . 44

3.1.2 Graph-based Planning . 44

3.2 Planning with User-Assisted Search Control 47

3.2.1 Hierarchical Task Networks 47

3.2.2 Planning Using Temporal Logic 50

3.3 Plan Repair . 51

3.4 Anytime Planning . 53

3.5 Heuristic Search . 59

3.6 Summary . 61

Contents vii

4 Local Subplan Replacement 62

4.1 System Description and Motivation 62

4.2 Finding Plans . 65

4.2.1 Predicate Rules . 66

4.2.2 Finding a Plan . 79

4.2.3 Search Control . 80

4.2.4 Example Rule Set . 83

4.3 Valid Plan Repair in Polynomial Time 83

4.3.1 Correctness . 84

4.3.2 Computational Complexity . 88

4.4 Using Local Subplan Replacement to Improve Plans 89

4.4.1 Replacing Subplans . 89

4.4.2 Finding the Goal Set for a Subplan 92

4.4.3 Classifying Subplan Goals . 96

4.5 Selecting Subplans to Replace . 98

4.6 Summary . 100

5 Experimental Evaluation 103

5.1 Experiment Design . 106

5.1.1 Planning Algorithm Parameters 110

5.2 Overall Results . 111

5.2.1 Subplan Levels . 111

5.3 Analysis Metrics . 114

5.3.1 Utilization of Original Search 114

5.3.2 Repair Penalty . 121

5.4 Failure Severity . 124

Contents viii

5.5 Initial Plan Length and Failure Spacing 135

5.6 An Incomplete Baseline Run . 153

5.7 Computational Resources . 157

5.8 Discussion . 157

6 Conclusions and Future Work 161

6.1 Conclusions . 161

6.2 Future Work . 163

6.2.1 New Domains . 163

6.2.2 Determining Time Allocation 163

6.2.3 Reorganizing Subplan Replacement 164

6.2.4 Tractable Algorithms for Valid Planning 165

6.2.5 Modified Depth-first Search 167

A Rules for the Repair Robot Domain 168

B Maps, World States, and Failures 180

B.1 Map Layout . 180

B.2 Initial States . 186

B.3 Failure Scripts . 188

List of Figures

2.1 Towers of Hanoi . 24

2.2 The operator get-part-from . 37

2.3 The operator place-part-at . 38

2.4 The operator travel . 39

2.5 The operator activate-machine . 40

2.6 The operator deactivate-machine 41

4.1 Rule for Moving a Robot . 67

4.2 Rule for Obtaining a Machine Part 69

4.3 Apply-rule . 71

4.4 Parse-achieve . 72

4.5 Parse-and . 72

4.6 Parse-or . 73

4.7 Apply-conjunction-list . 73

4.8 Apply-disjunction-list . 74

4.9 Parse-forall . 74

4.10 Parse-exists . 75

4.11 Get-binding-list . 75

4.12 Parse-choose . 76

ix

List of Figures x

4.13 Search-disjunction . 77

4.14 Parse-check . 78

4.15 Parse-goal . 78

4.16 Pseudocode for Find-plan . 79

4.17 Pseudocode for Make-goal-graph . 80

4.18 Pseudocode for Find-best-plan . 81

4.19 Pseudocode for Find-plan-for-goal 82

4.20 Plan Repair . 85

4.21 Plan Operator Repair . 86

4.22 Local Subplan Replacement . 91

4.23 Finding Subplan Goals . 94

4.24 Classifying Subplan Goals . 97

4.25 Anytime Replanning . 99

4.26 Finding Subplan Boundaries . 101

4.27 Updating Anchors . 101

5.1 Global Replanning Variations vs. Local Subplan Replacement Varia-

tions (2142 runs/algorithm) . 112

5.2 Plan Cost vs. Subplan Level (714 runs/level) 115

5.3 Plan Cost vs. Subplan Level: LocalSub-1 and Baseline-1 (357 runs/level)116

5.4 Plan Cost vs. Subplan Level: LocalSub-2 and Baseline-2 (357 runs/level)117

5.5 Plan Change Percentage vs. Subplan Level: LocalSub-1 and Baseline-1

(357 runs/level) . 118

5.6 Plan Change Percentage vs. Subplan Level: LocalSub-1 and Baseline-1

(357 runs/level) . 119

List of Figures xi

5.7 Plan Change Percentage vs. Subplan Level: LocalSub-2 and Baseline-2

(357 runs/level) . 120

5.8 Original Plan Operator Utilization vs. Subplan Level: LocalSub-1 and

Baseline-1 (357 runs/level) . 122

5.9 Original Plan Operator Utilization vs. Subplan Level: LocalSub-2 and

Baseline-2 (357 runs/level) . 123

5.10 Plan Cost vs. Number of Failed Parts (1 or 2 parts: 1512 runs; 3 parts:

1008 runs; 6 parts: 252 runs) . 125

5.11 Plan Cost vs. Number of Failed Parts, LocalSub-1 and Baseline-1 (1

or 2 parts: 756 runs; 3 parts: 504 runs; 6 parts: 126 runs) 126

5.12 Plan Cost vs. Number of Failed Parts, LocalSub-2 and Baseline-2 (1

or 2 parts: 756 runs; 3 parts: 504 runs; 6 parts: 126 runs) 127

5.13 Plan Cost vs. Subplan Level: LocalSub-2 and Baseline-2, 1 Part Fail-

ure (126 runs/level) . 129

5.14 Plan Cost vs. Subplan Level: LocalSub-2 and Baseline-2, 2 Part Fail-

ure (126 runs/level) . 130

5.15 Plan Cost vs. Subplan Level: LocalSub-2 and Baseline-2, 3 Part Fail-

ure (84 runs/level) . 131

5.16 Original Plan Operator Utilization vs. Subplan Level: LocalSub-2 and

Baseline-2, 1 Part Failure (357 runs/level) 132

5.17 Original Plan Operator Utilization vs. Subplan Level: LocalSub-2 and

Baseline-2, 2 Part Failure (357 runs/level) 133

5.18 Original Plan Operator Utilization vs. Subplan Level: LocalSub-2 and

Baseline-2, 3 Part Failure (357 runs/level) 134

5.19 Repair Penalty vs. Failure Severity 136

List of Figures xii

5.20 Plan Cost vs. Subplan Level: LocalSub-2 and Baseline-2, Initial Plan

Repairs 7 Machines (153 runs/level) 138

5.21 Plan Cost vs. Subplan Level: LocalSub-2 and Baseline-2, Initial Plan

Repairs 10 Machines (204 runs/level) 139

5.22 Repair Penalty vs. Initial Plan Length 140

5.23 Smaller Initial Plan, by Operator . 141

5.24 Larger Initial Plan, by Operator . 142

5.25 Plan Cost vs. Failure: Short Initial Plan: LocalSub-2 and Baseline-2 . 144

5.26 Repair Penalty vs. Failure: Short Initial Plan 145

5.27 Plan Cost vs. Subplan Level: LocalSub-2 and Baseline-2, 1-2-2 (51

runs/level) . 146

5.28 Plan Cost vs. Subplan Level: LocalSub-2 and Baseline-2, 1-3-3 (51

runs/level) . 147

5.29 Plan Cost vs. Subplan Level: LocalSub-2 and Baseline-2, 1-4-1 (51

runs/level) . 148

5.30 Plan Cost vs. Subplan Level: LocalSub-2 and Baseline-2, 1-2-2-2-2 (51

runs/level) . 149

5.31 Plan Cost vs. Subplan Level: LocalSub-2 and Baseline-2, 1-4-4 (51

runs/level) . 150

5.32 Plan Cost vs. Subplan Level: LocalSub-2 and Baseline-2, 1-5-3 (51

runs/level) . 151

5.33 Plan Cost vs. Subplan Level: LocalSub-2 and Baseline-2, 1-6 (51

runs/level) . 152

5.34 Original Plan Operator Utilization vs. Subplan Level: LocalSub-2 and

Baseline-2, Initial Plan Repairs 7 Machines (153 runs/level) 154

List of Figures xiii

5.35 Original Plan Operator Utilization vs. Subplan Level: LocalSub-2 and

Baseline-2, Initial Plan Repairs 10 Machines (204 runs/level) 155

5.36 Repaired Plan . 156

5.37 Nodes Expanded vs. Subplan Level (716 runs/level) 158

A.1 Rule for machine-works . 168

A.2 Rule for robot-at . 169

A.3 Rule for machine-slot-full . 169

A.4 Rule for machine-slot-empty . 170

A.5 Rule for robot-slot-full . 171

A.6 Rule for robot-slot-empty . 172

A.7 Rule for not-machine-works . 173

A.8 Rule for can-activate-machine . 173

A.9 Rule for get-part-for . 174

A.10 Rule for get-extra-parts-for . 175

A.11 Rule for get-other-machine-parts 176

A.12 Rule for install-one-part . 177

A.13 Rule for install-all-parts . 177

A.14 Rule for part-for-slot-gotten . 178

A.15 Rule for tag-added-for . 179

B.1 Map 1 . 181

B.2 Map 2 . 182

B.3 Map 3 . 183

B.4 A Failure Script . 190

1

Introduction

1.1 The Planning Problem

Planning, that is, generating a sequence of actions for an agent to perform in order to

achieve a set of goals, is a very hard problem in general. Many interesting planning

problems are NP or PSPACE-Complete [33] [17], or undecidable [18].

A large number of different approaches and heuristics that have appeared in the

planning literature attempt to make planning practical. All these approaches attempt

to find a way to limit the space that is searched for a plan. Sacerdoti [54] devised

a system that began by creating abstract plans. Detailed plans were created by his

system once the abstract plans were complete. Plans with unsuitable abstractions

were ignored by the search process, a considerable computational savings. Many

planning systems (e.g. [9] [42], [40]) use domain-independent search heuristics to

limit the space searched. Many other planning systems (e.g., [7] [59] [47]) enable the

user to specify domain-dependent search control rules to limit the space searched.

Reactive control systems (e.g. [16]) seek to eliminate online search entirely. In

such systems, all planning happens at design time, when the control system is con-

1

1.1. The Planning Problem 2

figured. At run-time, the control system functions essentially as a lookup table, with

actions indexed by the sensor inputs. Hybrid approaches (such as [13] [5] [15]) have

demonstrated the need for incorporating planning into a robot control system and

have provided mechanisms for enabling planning and reactive control systems to work

together. These architectures leverage the best features of both types of action se-

lection system; the reactive components focus on action selection with short time

horizons, while the planning systems address long-term system control issues.

Many planning domains involving robots have the property that events beyond

the control of the robot may occur that cause the robot’s plan to fail. A plan failure

occurs when, during the execution of the plan, an operator’s precondition is not met,

making it impossible for the plan to continue. When a plan fails, it becomes necessary

to devise a new plan that accommodates the exogenous event or events that caused

the old plan to fail. This new plan must be devised in a timely manner. In a valid

plan, all operator preconditions are true when applied, and all goals get achieved

when the plan completes, assuming that the plan runs to completion without the

occurrence of any plan failures.

Many systems currently exist that attempt to utilize some of the operators present

in a failed plan in order to replan. Existing algorithms for replanning either fail to

guarantee that the resulting plan will complete all specified goals [51], require human

input [27], or make no guarantees about when a valid plan will become available [61]

[38] [31]. Algorithms in the latter category can, in many interesting situations, require

exponential search to guarantee a valid plan.

Theoretical work by Nebel and Koehler [49] has shown that, in the worst case,

attempting to utilize operators from an existing plan in order to replan is just as

computationally complex as generating a new plan from scratch. They acknowledge,

however, that there are many situations in practice where utilizing operators from

1.1. The Planning Problem 3

the original plan is efficient.

Motivated by the need to have an executable plan generated online and avail-

able upon demand, anytime planners (e.g. [63] [2] [24]) seek to allow the system to

exchange execution time for solution quality. That is, the quality of a plan is propor-

tional to the amount of time such a planner has available for execution. Should the

planner be interrupted while executing, the best plan available at the point of inter-

ruption is what the planner returns. Anytime planners typically select one aspect of

a plan to progressively improve. Some planners (e.g. [63]) improve the level of detail

in a plan as time permits, initially creating only a very abstract plan. Other plan-

ners (e.g. [24] [28] [29]) progressively improve the probability of plan success. The

interruptibility of these latter planners relies on being able to incrementally improve

the probability of plan success. In order for such planners to function properly, it is

important to model the probability of operator success as accurately as possible.

I have investigated a technique for the implementation of an anytime replanning

algorithm. The technique uses a form of plan improvement I call local subplan replace-

ment. The idea is to improve a plan by replacing progressively larger plan segments.

An anytime planning algorithm should possess the following characteristics:

• An executable plan should be available almost immediately.

• As the algorithm progresses, the quality of the new plan should improve, or at

least it must not get worse.

As a means of achieving the second property, local subplan replacement seeks to

use operators from the original plan in order to improve the repaired plan quality at

all stages. Throughout this process, plan validity is preserved.

In order to achieve the first property, local subplan replacement needs a valid

plan to be available in polynomial time. This is not possible for every planning

1.2. Thesis Statement 4

problem. For some planning problems, finding a valid plan is NP-Complete, PSPACE-

Complete, or even undecidable. However, there do exist many planning problems for

which finding an optimal plan may be NP-Complete, but for which a valid plan can

be found in polynomial time.

Such planning problems have been classified in several ways. Bylander [17] and

Erol et al. [33] classified them based on restricting operator preconditions and post-

conditions. Korf [43] showed how planning problems where the goals and subgoals

are independent can be solved in polynomial time by finding a plan for each goal and

subgoal and then concatenating the resulting plans. Yang et al. [62] extended this

idea by showing how certain types of goal interactions could be handled efficiently.

Devising effective autonomous agents that employ anytime planning requires so-

lutions for two related but distinct problems: designing effective anytime planning

algorithms, and designing algorithms that determine how much time is to be allocated

to the anytime planner (e.g. Boddy and Dean [12] and Zilberstein and Russell [64]).

The second problem, deliberation scheduling, is beyond the scope of this work.

My dissertation research is concerned with the first problem, that is, investigating

the behavior of techniques that can be used for the design of effective anytime planning

algorithms; specifically, analyzing the performance of a replanning system using local

subplan replacement in order to determine whether it is suitable for implementing an

anytime replanning system. Part of the purpose of this is to achieve an understanding

of the dynamics of how local subplan replacement handles different situations.

1.2 Thesis Statement

Local subplan replacement provides an effective means for organizing an anytime

algorithm for planning, in the context of repairing a preexisting plan that has en-

1.3. Local Subplan Replacement 5

countered a failure. It utilizes the results of the search process that produced the

preexisting plan in order to guide the search for a new plan.

1.3 Local Subplan Replacement

In the search for the original plan, many alternative plans were considered, the best

of which was returned. Local subplan replacement attempts to use this original plan

to guide its search for a new plan. If only a small amount of time is available, it

will only consider plans that are very similar to the original plan. If time permits,

local subplan replacement will consider plans that are increasingly different from the

original plan.

Local subplan replacement provides a particular means of organizing the search

for a new plan. Global replanning provides a more traditional means of organizing

the search for a new plan. Both can be implemented as anytime algorithms. I have

used global replanning as a baseline algorithm for assessing the performance of local

subplan replacement; in particular, to determine whether exploiting elements of the

search that was used to generate the original plan is preferable, and if so, under what

circumstances.

1.4 Contributions

Here are the contributions of this dissertation:

• No existing systems for plan repair (e.g. [27] [61] [20] [38] [53]) implement any-

time planning so as to guarantee always having a valid plan available. Local

subplan replacement is the first anytime replanning algorithm to do this. On

average, the initial valid plans are available within two seconds.

1.4. Contributions 6

• For the Repair Robot planning problem, local subplan replacement is demon-

strated empirically to generate plans that do a better job of maximizing factory

production than those generated by a global replanning algorithm.

• Limitations of local subplan replacement are demonstrated empirically. High

values for the repair penalty, a greedy measure of the distance in plan space

between the original failed plan and a valid repaired plan, are shown to cor-

respond with local subplan replacement requiring large amounts of search to

generate a plan of lower cost than the corresponding baseline.

• The effect of using the original plan to guide the search is quantified and mea-

sured empirically. The plans that local subplan replacement generates contain,

on average, significantly more operators from the original plan than those gen-

erated by the baseline. In many cases, this utilization corresponded to a lower

plan cost than the baseline, empirically demonstrating the benefit of utilizing

material from the original plan.

• The global replanning algorithm used as a baseline is itself a new anytime

planning algorithm. Unlike existing systems, it will always have available a

valid plan, and it takes responsibility for generating the first plan in its anytime

progression.

• Existing theoretical results regarding categories of planning problems for which

valid plans can be found in polynomial time are unified. Delete effects involving

resource consumption are identified as a major contributor to the intractability

of finding valid plans in polynomial time for certain planning problems.

1.5. Guide to This Dissertation 7

1.5 Guide to This Dissertation

In Chapter 2, I give a rigorous definition of the planning problem, as well as defini-

tions for plan repair and anytime planning. I describe the characteristics for what I

consider to be a good anytime planning system. I describe what is known about the

computational complexity of planning. I describe characteristics of target problems

of my research and give several examples. I then define the Repair Robot planning

problem. This planning problem is used as a running example throughout my disser-

tation.

In Chapter 3, I describe examples of different types of planning systems from

the literature. Existing systems that perform replanning and anytime planning are

discussed in detail.

In Chapter 4, I describe the anytime planning system that will be evaluated in

order to investigate the thesis statement. Of particular importance is local subplan re-

placement, described in Section 4.4, which is the focus of my analysis in this research.

Also described in Chapter 4 is an algorithm for repairing failed plans (Section 4.3),

and the planning algorithms I used for implementing and evaluating local subplan

replacement (Section 4.2).

In Chapter 5, I present the results of the experiments I conducted in order to

evaluate the thesis statement. I describe the experimental design used, I show the

results of my experiments, and I discuss how the results demonstrate the utility of

local subplan replacement in the context of anytime planning.

Chapter 6 summarizes the contributions of this dissertation and gives directions

for future work.

2

The Planning Problem

2.1 Planning and Robotics

The term “planning” is used in two major ways in the robotics community. One

type of planner used in robotics is called a path planner. A path planner attempts to

construct a geometrical path for a robot leading from its initial position to its target

position. This could apply to a mobile robot attempting to travel from one position

to another, and it could apply equally well to a robot manipulator maneuvering

to position itself to grab an object. The world model used by a path planner will

typically consist of a geometrical model of the environment and a geometrical model

of the robot.

A more abstract type of planner, used in robotics applications as well as many

other domains, is called a classical planner [58] or task planner. Such a planner

attempts to construct a sequence of operators (or actions) that will enable the robot to

achieve its goals. This sequence of operators is constructed based on reasoning about

a world model. Many different approaches to representing the world can be found

in the literature. An assertional database is the most commonly used approach for

8

2.2. Definition of the Planning Problem 9

representing the world in this paradigm. My dissertation research focused specifically

on task planning, the subject of the rest of this chapter.

2.2 Definition of the Planning Problem

2.2.1 Propositional STRIPS Planning

For the purposes of this dissertation, and loosely following the definitions given by

others (e.g. [34] [17]), I define STRIPS planning as follows:

A STRIPS planning domain consists of two finite sets: a predicate set and an

operator set. The predicate set represents a state using predicate notation. Each

predicate in the set is a propositional variable that can take the values true and

false. Each operator in the operator set consists of two satisfiable conjunctions of

predicates from the predicate set, the preconditions and the postconditions (the latter,

also called the effects), each term of which is called a precondition or postcondition,

respectively. Among the postconditions, each term has a truth value listed, those

terms with true listed are called add effects and those terms with false listed are

called delete effects.

A STRIPS planning problem consists of a STRIPS planning domain together with

an initial world state and a goal state. A world state is a set of assignments of values

to each predicate in the predicate set of the STRIPS planning domain. A goal state is

a satisfiable conjunction of predicates from the predicate set. Each term in the goal

state is called a goal.

An operator is applicable in a given world state only if its preconditions are true.

To apply an operator to a world state creates a new world state by assigning to each

predicate in the world state that corresponds to an effect the boolean value listed for

2.2. Definition of the Planning Problem 10

the effect. An operator may be applied to a world state only if it is applicable.

A STRIPS plan (alternatively called a total-order STRIPS plan) is a totally or-

dered finite set of STRIPS operators where:

• The plan contains n operators, numbered from 0 to n− 1

• The current state for operator 0 is the initial world state

• The current state for operator i, i ≥ 1, is the state resulting from applying the

postconditions of operator i− 1 to the current state for operator i− 1

A STRIPS plan is valid if and only if:

• Every operator is applicable in its current state; and

• The goal state is true when the postconditions of operator n− 1 are applied to

its current state.

A partial-order STRIPS plan is a directed acyclic graph with a finite number of

nodes n where:

• Each operator in the plan is a node

• An edge from nodex to nodey indicates that a postcondition of nodex establishes

a precondition of nodey

A partial-order STRIPS plan is valid if and only if each STRIPS plan correspond-

ing to a topological sort of the partial-order STRIPS plan is valid.

In the worst case, finding a plan for a STRIPS planning problem is PSPACE-

Complete [17] [33]. A more detailed description of the complexity of STRIPS planning

under different conditions is given in Section 2.3.2.

2.2. Definition of the Planning Problem 11

The cost of a STRIPS plan is the number of operators it contains. An optimal

STRIPS plan contains the minimum number of operators that can transform the

initial world state into a world state in which the goal state is true.

It is also possible for each operator to have a distinct cost value. In this case, the

cost of a STRIPS plan is the sum of the costs of the operators that constitute it. It

is further possible for the cost of an operator to be a function of the state in which

that operator is applied. Again, the total plan cost will be the sum of the costs of its

operators.

2.2.2 Plan Repair

The concept of plan validity (as defined above in Section 2.2.1) assumes that all

changes to the world state are made by the agent executing the plan. Such an

environment is a static environment. In a dynamic environment, changes to the world

state can occur from sources other than the robot. Throughout this dissertation I will

use “valid” assuming the context of a static environment even if the robot is actually

in a dynamic environment. For the static case the system can determine if a plan

is valid without actually executing the plan; rather the system need only model the

execution, almost as a “thought experiment”.

A plan failure occurs when, during plan execution, a precondition of the operator

about to be applied is found to be false, thus rendering the plan invalid. A plan

failure may result either from the planning agent failing to properly apply one of its

operators during plan execution, or from an exogenous event. Either cause of a plan

failure can be considered to be a feature of a dynamic environment.

A replanning problem is a planning problem in which the initial world state is the

result of the application of a proper subset of the operators of a previously-generated

plan, combined with a state change corresponding to a plan failure. A plan repair

2.2. Definition of the Planning Problem 12

algorithm uses an existing failed plan to guide the search for a solution to a replanning

problem.

Nebel and Koeler [49] did an extensive study of the theoretical benefits of gener-

ating a plan by utilizing parts of an old plan, as opposed to generating a new plan

from scratch. Their work shows that it is not possible to achieve a provable efficiency

gain by reusing parts of an old plan to generate a new plan. In other words, plan

repair is computationally just as hard a problem as plan generation.

2.2.3 Anytime Planning

The anytime algorithm was originally defined as a distinct category of algorithm by

Dean and Boddy [23] (who also gave many examples of algorithms from the literature

that belong to this category) based on these two characteristics:

• The algorithm can be terminated at any time and will return some answer; and

• The answers returned improve in some well-behaved manner as a function of

time.

Anytime planning systems are planning systems that have the characteristics of an

anytime algorithm. From these characteristics, we can see that each anytime planner

must have some means of quickly generating an initial plan, combined with a means

for finding improved plans. The manner in which an anytime planner explores the

search space for improved plans I call the anytime progression.

In addition to the defining characteristics of an anytime planning system given

above, I consider the following to be desirable characteristics of an anytime planning

system:

1. Any plan returned will always achieve all goals; in effect, only valid plans will

be considered as possible solutions.

2.3. Computational Complexity of Planning 13

2. The planning system does not depend upon a specific type of plan evaluation

metric.

3. The planning system is applicable to an appreciable range of task planning

problems.

Item 1 is important because you want to know that before you execute the first

operator that all the goals are achievable. Anytime planners that return partial plans

often can provide no assurance as to when the operators to finish the plan will become

available. Having an initial plan that achieves all the goals removes this uncertainty.

There exists a certain tension between items 1 and 3, in that being able to guar-

antee that a plan will achieve all of its goals excludes many task planning problems.

Section 2.3.2 describes a number of categories of planning problems, including a dis-

cussion as to whether or not it is tractable for them to meet the constraint stated

in item 1. For examples of domains for which this guarantee is tractable, see Sec-

tion 2.3.7.

2.3 Computational Complexity of Planning

The planning problem is undecidable in general [18]. Even under very restricted

conditions it is often PSPACE-Complete or NP-Complete [17] [33]. This section

will give an overview of the conditions that induce varying levels of computational

complexity in planning problems and discuss some of the properties essential to the

proofs of these complexities.

There is an important distinction to be made in how a planning problem is viewed

that affects how we speak of its complexity. The same planning problem can be per-

ceived as having drastically different computational complexity depending on the

2.3. Computational Complexity of Planning 14

way in which it is classified. Some planning problems can be placed in two different

categories, and in some cases those two categories can be shown to have two differ-

ent worst-case computational complexities. The point is that demonstrating that a

particular planning problem belongs in a particular category of computational com-

plexity does not necessarily demonstrate a tight lower bound on the computational

complexity of that particular problem. It may be that a tighter lower bound could

also be demonstrated for it.

2.3.1 Decidable and Undecidable Planning Problems

David Chapman [18] proved the first important results about classical planning. He

devised a planner (TWEAK) that represented a rigorous mathematical reconstruction

of previous nonlinear planners. TWEAK is both a formal semantics for planning and

a working, implemented planning system. Chapman proved that TWEAK is correct

and complete; that is, if TWEAK terminates and returns a plan, the plan produced

does in fact solve the problem, and if TWEAK returns signaling failure or fails to

halt, no solution exists.

He then used the TWEAK formalism to show that planning is undecidable in gen-

eral. Chapman’s first undecidability theorem states that planning is undecidable in

TWEAK. The key element of the proof is that Chapman shows that a Turing machine

with its input can be encoded as a planning problem in the TWEAK representation.

This can be done in part because TWEAK can represent an infinite (though still

recursive) initial condition and an infinite number of constants.

The plan language TWEAK uses is restricted to contain constant symbols and

predicate symbols. If function symbols are allowed, the theorem proving TWEAK to

be correct and complete is no longer valid. Additionally, once function symbols are

allowed, Chapman’s second undecidability theorem states that planning is undecid-

2.3. Computational Complexity of Planning 15

able even if the initial state is restricted to be finite. To prove this theorem, Chapman

encoded a two-counter machine as a planning problem in the TWEAK representation

augmented with function symbols. Because any recursive function can be computed

by a two-counter machine, TWEAK with function symbols can also compute any

recursive function.

Erol, Nau and Subrahmanian [33] show that the presence or absence of condi-

tional operators in the plan language has no effect on the decidability of the planning

domain. The distinction rests on the fact that a conditional operator is defined to

have a finite set of mappings from a finite input set to a finite output set, restrictions

that are not placed on function symbols.

2.3.2 Tractable and Intractable Planning Problems

Bylander [17] explored a series of restrictions that can be placed on planning within

the realm of decidable STRIPS planning problems, and devised a hierarchy of com-

plexity results for planning. The planning problems he examined were classified into

PSPACE-complete, NP-complete, and polynomial time categories. Ways of varying

planning problems include:

• Limiting the numbers of preconditions and postconditions

• Disallowing postconditions that negate the state change caused by the postcon-

dition of another operator (a negative postcondition)

• Disallowing preconditions that require the value of a predicate symbol to be

false (a negative precondition)

• Limiting the total number of goals the planner can achieve

2.3. Computational Complexity of Planning 16

Bylander gives complexity results for both the problem of determining whether

a plan exists (PLANSAT) and whether a plan of k steps or less exists (PLANMIN).

Planning problems Bylander showed are PSPACE-complete (for both PLANSAT and

PLANMIN) include:

• No restrictions on preconditions and postconditions

• One postcondition

• One precondition

• Two positive preconditions and two postconditions

Problems shown to be NP-complete for both PLANSAT and PLANMIN include:

• Only positive postconditions

• One precondition and one positive postcondition

Problems where PLANSAT is polynomial but PLANMIN is NP-complete:

• Positive preconditions and one postcondition

– A version of the well-known Blocks World problem [36] falls in this category

• Positive preconditions and positive postconditions

• No preconditions and unrestricted postconditions

• No preconditions and two postconditions

• No preconditions and three positive postconditions

Unsurprisingly, the PLANMIN polynomial time planning problems possess ex-

tremely severe restrictions:

2.3. Computational Complexity of Planning 17

• One precondition and a constant upper bound on achievable goals

• No preconditions and one postcondition

• No preconditions and two positive postconditions

Although Bylander’s complexity analysis is done in terms of propositional STRIPS

planning [34], his results specify how hard it is to find a sequence of actions that ac-

complishes a set of goals, regardless of how the action sequence is generated. Bylan-

der’s analysis is domain-independent; a practical planning system could attempt to

utilize domain-specific knowledge in order to reduce the computational complexity of

a given problem. For example, the fact that two goals are independent of each other

can be directly exploited by the planning algorithm of Korf [43] (see Section 2.3.3 for

details).

As we can see in the categories above, restricting postconditions to being positive

tends to cause a decrease in computational complexity. The presence of negative

postconditions tends to inhibit the ability to find valid plans in polynomial time. This

is because a negative postcondition can delete an already-achieved goal (or subgoal).

Since this can happen as an undesired side effect of an operator that achieves a

different goal, it can be difficult to discover an operator sequence in which these

conflicts do not occur. These conflicts are called deleted-condition interactions.

If none of the delete effects are able to delete the predicate added by an add

effect, then the domain can be transformed to have no delete effects [17], potentially

improving its worst-case computational complexity. If alternative means can be found

for eliminating conflicts between positive and negative postconditions, the worst-case

computational complexity can also be improved. See Sections 2.3.4 and 2.3.5 for

examples of this.

2.3. Computational Complexity of Planning 18

One interesting category in which finding a valid plan is still tractable even with

allowing negative postconditions is domains in which all preconditions are positive

and there is only one postcondition per operator. As was shown by Bylander [17],

a polynomial time algorithm for finding a valid plan for such a domain is to first

achieve all the positive goals, then all the negative goals. Because all preconditions

are positive, the only predicates that will be negated are predicates whose negation

is a goal condition. Hence, if any deleted-condition interactions occur, the operators

interacting can simply be swapped in order to eliminate the interaction.

Another interesting category consists of domains in which operators have at most

one precondition, any number of postconditions, and a constant upper bound g on the

number of goals. In those domains, a minimum cost plan can be found in polynomial

time. With n predicates in the initial world state, the worst-case running time is

multiplied by the constant ng.

The key to this category is the restriction to one precondition. If more than one

precondition were permitted, the resulting subgoal expansions could result in more

than g goals needing to be achieved, violating that constraint.

In addition to Bylander’s categories, Erol et al. [33] proved valid plans could be

found in polynomial time for planning domains in which operators were limited to

any number of positive preconditions and positive postconditions. Finding minimum

length plans remains NP-Complete in this category.

Backstrom and Nebel [8] introduce a planning formalism called SAS+ to prove

certain categories of planning problems to be tractable. Their tractability criteria are

based on the following restrictions:

• Post-uniqueness: For each predicate, there exists at most one operator that

achieves that predicate. That is, the goals and preconditions uniquely determine

the operators to be used.

2.3. Computational Complexity of Planning 19

• Single-valuedness: Predicates that are operator preconditions that are not

changed by the operator are called prevail-conditions. If a predicate is a prevail-

condition for an operator, it may only be a prevail-condition for another operator

if that other operator expects exactly the same value.

• Unariness: Each operator only changes one state variable.

• Binariness: All state variables have exactly two values.

They proved that planning problems for which post-uniqueness, single-valuedness,

and unariness hold can be optimally solved in polynomial time. If post-uniqueness is

relaxed (and it is a severe restriction), then a valid plan can be found in polynomial

time, but finding an optimal plan is intractable.

2.3.3 Restricting Goal Interactions

Korf [43] observed that if the goals to be achieved are independent (that is, none of the

operators used for achieving any goal interact with the operators used for achieving

any other goal), and if achieving each individual goal can be done in polynomial time,

then a valid plan can be found in polynomial time by achieving the individual goals

separately and then concatenating the operators together. As goal independence is a

rather strong assumption, this result was generalized by Yang, Nau, and Hendler [62].

They presented an algorithm that can take a set of plans, where each plan achieves a

single goal, and merge these plans into a single plan that achieves all the goals. They

show that complete goal independence is not necessary for this merging to occur.

Plan operators may have the following categories of interactions:

• Action-merging interactions occur when the operators used to achieve different

goals have redundant effects and can be combined.

2.3. Computational Complexity of Planning 20

• Action-precedence interactions occur when an action in the plan for one of the

goals must occur before some action in the plan for another goal. If this prece-

dence is not kept, then the plan will fail.

• Identical-action interactions occur when the same operator must be used in

different plans. This is a more specific type of interaction than an action-

merging interaction.

• Simultaneous-action interactions occur when two different actions must occur

at exactly the same time.

Korf’s algorithm can be seen as a special case of this plan merging algorithm,

where none of the plans to achieve the goals have any interactions.

2.3.4 Plan Merging and Operator Restriction

In this section, I present problem transformations that demonstrate the relationship

between the results presented in Sections 2.3.2 and 2.3.3.

Korf’s plan concatenation algorithm ([43]; discussed above in Section 2.3.3) can

be transformed into a planning problem where all the operators have no preconditions

and one postcondition (see Section 2.3.2). For each independently achievable goal,

there exists an operator which applies a set of state changes that makes the goal

true. Because each goal is independently achievable, any of these operators can be

applied in either the initial state or in any state resulting from applying any of these

operators.

When the plans to be concatenated are not completely independent, but their

interactions are restricted to the action-merging and action-precedence interactions

described by by Yang, Nau, and Hendler [62], then plan concatenation can be trans-

formed into a planning problem where all the operators have positive preconditions

2.3. Computational Complexity of Planning 21

and positive postconditions. Identical-action and simultaneous-action interactions re-

quire explicit representation of time points or intervals in action definitions, or some

other similar temporal representations. Actions with these representations are not

expressible using STRIPS operators, and hence are beyond the scope of this discus-

sion.

There are three components to the plan-merging algorithm:

• Generate a plan for each goal in polynomial time.

• Create a partially ordered graph encoding the action-precedence and action-

merging interactions. Creating this graph is O(n3) in the worst case, where n

is the total number of operators across all the plans [62].

• Combine the individual plans into a single plan.

The presence of the graph containing the action-precedence interactions enables

valid plans to be found just as easily as the case without these interactions. This is

because a total ordering of the actions can be extracted from the precedence graph.

When that ordering is used with the simple form of plan concatenation discussed

above, computational complexity remains the same.

Taking advantage of action-merging interactions has the effect of improving the

cost of the resulting plan; finding a valid plan is no easier or harder in the presence of

such interactions. We can transform this into an operator-restricted planning prob-

lem with positive preconditions and positive postconditions as follows. An orig-op

is an operator in the original planning domain; a multi-op is an operator in the

transformed planning domain.

For each independently achievable goal, there exists a set of multi-ops, each of

which applies a set of state changes that makes the goal true. At least one of the

2.3. Computational Complexity of Planning 22

multi-ops in the set can be applied in any state. Different multi-ops in the set can

be considered to have different lengths, reflecting the fact that each multi-op is a

shorthand for a sequence of orig-ops. The different multi-ops are present to reflect

the possibility that although the goals themselves are independent, the actions taken

to achieve each goal might have side effects that make it shorter to achieve another

goal.

2.3.5 Dead-End States

A dead-end state is a world state from which there does not exist an operator sequence

that achieves the goals. It has been suggested by Hoffmann [39] that the presence of

dead-end states can indicate that a planning problem is computationally difficult. He

also observes that the ability to reliably recognize the presence of a dead-end state

can make a domain computationally less difficult.

In some cases, dead-end states can be avoided based on action-precedence rela-

tionships (see Section 2.3.7.2 for an example). A category of dead-end states that

cannot be solved by ordering constraints is caused by resource contention.

For example, assume that each plan operator consumes a certain amount of a

given resource, and assume as well that a sufficient amount of the resource is initially

available so that any given task may complete. Assume further that there exists

a subset of these tasks containing at least two tasks such that the initial resources

available are not sufficient for the needs of all tasks in the subset. If the resource is

not replenished, the plan reaches a dead-end state.

Handling dead-end states resulting from resource contention requires the existence

of a “replenish” operator that restores the resource. This operator cannot itself have

a limit on the amount of replenishment it can provide; if it does, when it runs out

of its resource, another dead-end state is encountered. See Section 2.3.7.3 for some

2.3. Computational Complexity of Planning 23

examples of domains of this sort with and without reachable dead-end states.

2.3.6 Exponential Length Plans

Another source of plan intractability is the problem of exponential length plans. There

exist domains for which the shortest valid plan contains an exponential number of

operators. In such domains, it is not even possible to apply all of the plan operators

in polynomial time, much less find a valid plan in polynomial time.1

An example of such a problem is the Towers of Hanoi problem, depicted in Fig-

ure 2.1. In this problem, the goal is to transport the tower of blocks from the first

position to the third position. Only one block may be moved at a time, and stacking

a large block atop a small block is not allowed. The first four steps of a plan to

complete this task are also given in Figure 2.1. The complete plan to move a stack

of four blocks contains 15 operators. As the number of blocks to be moved increases,

the minimum length of a valid plan increases exponentially [36].

2.3.7 Polynomial Time Examples

This section contains examples of several interesting domains in which it is possible

to find a valid plan in polynomial time. These domains have all appeared in the AIPS

planning competitions [46] [6]. The Blocks World domain (which has also appeared in

the planning competitions) was shown to belong to this category by Bylander, among

others [17].

1Dean et al. [22] have observed that by using macro operators, it is possible to find exponential

length plans in polynomial time for planning problems with a hierarchical structure such as the

Towers of Hanoi. Plan execution remains intractable, however.

2.3. Computational Complexity of Planning 24

Figure 2.1: Towers of Hanoi

2.3. Computational Complexity of Planning 25

2.3.7.1 Package Delivery Domains

In package delivery domains, the goal is to transport packages from their starting

locations to their goal locations using any of various means of transport available.

In the domain from the AIPS-2000 planning competition, the available vehicles are

trucks and airplanes. Trucks can transport packages within a city, and airplanes

transport packages between cities. To get a package onto an airplane, it must first be

transported by truck to an airport. Here is the operator set:

• load-truck package truck location

– Preconditions: truck and package at location

– Postconditions: package on truck, package not at location

• load-airplane package airplane location

– Preconditions: airplane and package at location

– Postconditions: package on airplane, package not at location

• unload-truck package truck location

– Preconditions: truck at location, package in truck

– Postconditions: package not on truck, package at location

• unload-airplane package airplane location

– Preconditions: airplane at location, package in airplane

– Postconditions: package not in airplane, package at location

• drive-truck truck start-location end-location city

2.3. Computational Complexity of Planning 26

– Preconditions: truck at start-location, start-location in city, end-location

in city

– Postconditions: truck at end-location, truck not at start-location

• fly-airplane airplane start-airport end-airport

– Preconditions: airplane at start-airport

– Postconditions: airplane at end-airport, airplane not at start-airport

One way to generate a valid plan in polynomial time would be to transport each

package to its destination one at a time, with the packages transported in an arbitrary

order. Finding an optimal plan is NP-Complete, because an optimal plan cannot be

longer than an arbitrary valid plan, and the length of an arbitrary valid plan is

polynomially bounded. Hence the optimal plan can be found nondeterministically in

polynomial time.

2.3.7.2 Elevator Logistics

The Miconic Elevator domain from the AIPS-2000 planning competition requires

finding a plan to transport various people to the correct floors of a building. The

main challenge in finding a valid plan is ensuring that passengers who must never be

left alone on the elevator are accompanied by passengers classified as “attendants”.

There are numerous other constraints as well; some passengers are “mutually exclu-

sive”, some are “nonstop”, and some can be “VIPs”. Beyond that, it is a matter of

optimizing retrievals based on passenger origins and destinations so that the elevator

makes the fewest stops.

The available operators are stop, up, and down. Applying stop causes all passen-

gers for which this floor is the destination to disembark and all passengers for which

this floor is the start to board.

2.4. Target Problems 27

In order to guarantee a valid plan, preconditions must be added to stop to guaran-

tee that there must always be an attendant on board until all never-alone passengers

have been delivered to their destinations.

2.3.7.3 Logistics with Resource Restrictions

The logistics domain described in section 2.3.7.1 can be varied by placing capacity

limits on the vehicles and by causing the vehicles to expend fuel when they move.

The MYSTERY domain from the AIPS-98 planning competition [46] incorporates

these ideas. In that domain, fuel cannot be replenished. Consequently, with those

modifications, finding a valid plan in polynomial time is likely intractable.

If a fuel supply depot with an inexhaustible supply of fuel is introduced, then it

becomes possible to find a valid plan in polynomial time. Every operator is given an

extra precondition that checks to make sure that the robot will have enough fuel to

go to a refueling station after the application of the operator. If it does not, it sets a

special predicate that triggers the application of a refueling operator.

Given this extra precondition, it should be possible to find a valid plan regardless

of the order in which the goals are achieved. The extra precondition and the refueling

operator have, in effect, removed the deleted-condition problem introduced by the

fuel depletion effects of the operators.

2.4 Target Problems

2.4.1 Target Problem Characteristics

The planning problem as defined above in Section 2.2 is general enough for many prob-

lems to be encoded as planning problems. In this section, I describe some assumptions

2.4. Target Problems 28

I make about the types of planning problems that my research is attempting to ad-

dress.

Theoretically, for any action selection problem, given a certain level of ability

to acquire knowledge from the world, an agent could select all its actions from a

lookup table rather than generating an action sequence in the form of a plan. The

lookup table would be indexed by sensor inputs, dictating the correct action in any

perceivable situation. This lookup table could also be indexed based on a world model

containing information remembered from previous sensor inputs.

Planning becomes necessary when a lookup table containing responses for every

possible situation of interest becomes too large. At that point, there is a tradeoff

between space and time, and it is better to spend time generating actions on-the-fly

rather than attempting to find more space to store a lookup table. It may also be

intractable to determine the correct action for each entry in the lookup table, even if

storing the table itself is not impossible.

In a related manner, there could also exist situations in which a lookup table is

too large, but a relatively simple equation can still dictate actions. Servoing towards

a target in a continuous space is an example of this. No lookup table would store all

of the possible servo actions, but a compact control rule would still be sufficient for

determining an action for any scenario for which the agent is equipped. However, if

no such convenient rule (or set of rules) can be found, then a generative planner is

needed.

Another issue is the number of distinct agents that the planner can employ towards

achieving its tasks. If the number of tasks is less than or equal to the number of agents

that can achieve them, then one agent can be assigned to each task, provided that

there is no significant additional cost for using each agent. Actions for achieving

the tasks can then be selected using a lookup table or control rule. If there is an

2.4. Target Problems 29

additional cost for each agent employed, it can be worth considering alternatives to

using all the agents, and we once again have a search problem on our hands. Likewise,

if the number of tasks exceeds the available agents, alternative assignments of agents

to tasks must also be considered.

The above discussion relates to determining whether a generative planner is of

value at all. The remainder of the discussion relates to a discussion of the applicability

of replanning and local subplan replacement.

As local subplan replacement is concerned with improving valid plans, a target

problem should have a plan space containing a large number of valid plans of varying

quality. Restricting the problem domain to those for which valid plans can be found

in polynomial time ensures that a large number of valid plans are available. However,

if most or all of them are of the same quality, or if the variation in quality is not

consequential in the domain, then local subplan replacement is a waste of time.

As local subplan replacement seeks to use the original plan to guide the search

for a new plan, it relies upon good solutions to the new planning problem to be

reasonably close to the original plan within plan space. If they are too far away from

the original plan, then using that original plan to guide the search will not likely be

helpful. In Section 5.3.2, an empirical measure of this distance is defined.

Local subplan replacement can handle many types of failures, but it is important

that failures not be more frequent than the rate at which new plans can be generated

and enough operators applied for some tangible progress to be made towards a goal.

What that rate is depends heavily on the domain. The underlying concept is that

if failures are so frequent that planning actions sequences does not bring the agent

any closer to its goal, planning is not helpful. If the failure frequency is such that

planning can be helpful, then local subplan replacement has the potential to be of

benefit.

2.4. Target Problems 30

Another perspective on the issue of failures relates to the requirement that it

always be possible to find a valid plan if one exists. Each goal from the original

plan must still be achievable, assuming that it remains a goal after the failure. As

each failure involves the negation of a precondition of an operator that contributes to

achieving a goal, there must exist some other operator that can either achieve that

precondition or achieve the contribution of the operator of the failed precondition

towards achieving the goal. Without such an operator, local subplan replacement

cannot be applied.

For example, assume that a robot has a goal of delivering a letter to an office. If

on the way to the office the robot drops the letter into a paper shredder, there does

not exist a plan the robot can apply in order to achieve this goal.

Theoretically, even if a failure is such that all of the operators from the original

plan are useless, local subplan replacement will still work. In practice, however, it is

presumed that the nature of the failure will be such that a substantial proportion of

the operators from the original plan will still make a positive contribution towards

achieving the plan goals. Improving a plan by replacing subplans presumes that the

underlying structure of the original plan will match that of a high-quality plan. What

precisely this means depends upon the specifics of the given domain. Some examples

are given below in Section 2.4.2.

2.4.2 Potential Target Problems

The target planning problem for my experimental investigation of anytime replanning

is the Repair Robot problem, which is described in Section 2.5. This section describes

some other planning problems to which local subplan replacement could be applied.

In general, these target domains are logistics planning problems. In a logistics

problem, objects get moved and rearranged in various ways. The example domains

2.4. Target Problems 31

given in Section 2.3.7 are all logistics problems. Many mobile robot task planning

problems are also logistics problems, in that they involve the robot traveling to a

location and performing an action relative to an object. Examples of such planning

problems include a robot giving tours of an area [41], robot reconnaissance (such as

planetary exploration with robotic rovers [19]), and robot trash collection [35].

Here are some examples of plan failures that could occur in these domains:

• In the trucks and airplanes problem described in Section 2.3.7.1, one of the

vehicles allocated for a delivery could break down, requiring modifications to

the plan to either repair the vehicle or enable another vehicle to complete the

delivery.

• In the elevator domain described in Section 2.3.7.2, a passenger could request

a new destination.

• In the guided-tour robot domain, large crowds or construction work could ne-

cessitate the selection of an alternative path on the tour.

• In the robot trash collection domain, trash to be collected could be relocated,

or more trash could be introduced into the environment.

In all of these domains, it is important that failures not be so frequent as to

overwhelm the ability of the system to use a plan to make tangible progress towards

its goals. For example, in the trash collection domain, if each piece of trash is kicked

out of the robot’s reach every time it tries to grab it, planning is of little value.

However, if the majority of attempts to grab trash succeed, then planning action

sequences to obtain the trash can be of value. In the elevator domain, if passengers

request new destinations too frequently, it may be best to simply travel to the nearest

2.5. The Repair Robot Domain 32

destination floor before a change of mind occurs. If, on the other hand, new requests

are relatively infrequent, the original plan may still be of value.

Distinct from the idea of frequency is the utility of the structure of the original

plan. For example, if an original plan for the elevator problem transports two people,

and requests for the transportation of eight more people arrive, the structure of the

plan that transports two people will not provide much guidance towards finding a

high-quality plan for transporting eight people. A plan for package delivery that uses

eight airplanes and one truck per city will not provide much guidance if seven of the

airplanes are rendered inoperable. In contrast, if only two airplanes are disabled the

means by which the other six airplanes transport packages may still be of value. One

or two may be redirected, but the remaining airplanes can complete their deliveries

without alteration of their routes. Furthermore, the planes to be redirected can

be selected based on route compatibility. Determining how severe a failure can be

handled by local subplan replacement requires separate evaluation for each domain.

2.5 The Repair Robot Domain

2.5.1 Problem Description

The Repair Robot planning domain is used as a running example throughout my

dissertation. Its computational complexity is discussed below in Section 2.5.3.

In the repair robot domain, a single robot has to keep a set of machines operating.

The machines produce widgets in a factory environment. Different machines produce

different numbers of widgets for each time step. The robot’s goal is to maximize

overall machine productivity.

The machines break down from time to time. When a machine breaks down, the

2.5. The Repair Robot Domain 33

robot must replace all of that machine’s broken parts so that the machine is able to

resume operation. The robot can carry a limited number of parts at a time, and can

obtain parts from three different storehouses. Machines may require different types

of parts. Some types of parts might only be available from certain storehouses.

The robot is able to perform the following actions:

• Grab a part from a storehouse or machine

• Place a part in a machine or storehouse

• Travel from any machine or storehouse to any other machine or storehouse

• Activate or deactivate a machine

Whenever any machine breaks down, the robot generates a plan for repairing all

broken machines. The cost of a plan is the total number of widgets that the machines

fail to produce. For example, if two machines are broken, with the first machine

producing 1 widget/time step and the second machine producing 2 widgets/time

step, and the plan to repair the machines fixes the first machine after 3 time steps

and the second machine after 7 time steps, the cost of that plan would be 17.

The cost of a plan is determined by adding the cost of each operator in the

plan. The cost of an operator is the number of widgets that fail to be produced over

the course of the duration of the operator. The cost of traveling between locations is

proportional to the distance between those locations. All other operators are assumed

to take one time step, and have a cost proportionate to the amount of widgets not

produced during that interval.

Once a plan has been generated, plan failures may occur upon each attempt to

activate a machine. Each failure consists of some number of the parts in the machine

2.5. The Repair Robot Domain 34

being activated breaking, thus rendering it impossible to activate that machine. The

robot must then modify its plan to replace the newly broken parts for that machine.

2.5.2 Formal Problem Definition

The predicate set contains two groups of predicates. The first group contains type

identifiers. Each predicate is specified by a predicate name and a list of variables

(prefixed by question marks) indicating the predicate’s parameters. These predicates

are:

• is-machine ?machine

• is-storehouse ?storehouse

• is-part-type ?type

• is-robot-part-slot ?slot

• is-machine-part-slot ?machine ?slot

• machine-part-slot-type ?machine ?slot ?type

Note that “storehouses” are also considered “machines” that produce nothing, for

the purposes of these bindings.

The second group contains predicates that represent the changeable world state:

• not-machine-works ?machine

• machine-works ?machine

• robot-at ?machine

• machine-slot-full ?machine ?slot

2.5. The Repair Robot Domain 35

• machine-slot-empty ?machine ?slot

• robot-slot-full ?slot ?type

• robot-slot-empty ?slot

The four variables below are used in the operator cost functions and range over

the positive integers:

• cost

• num-machines

• production-rate ?machine

• travel-time ?machine-1 ?machine-2

Also used by the operator cost functions in addition to standard arithmetic opera-

tors, there is a function called widgets-not-produced. Its return value is the sum of

production-rate ?machine for all bindings of ?machine where not-machine-works

?machine is true.

The operator set contains five operators:

• The operator get-part-from (Figure 2.2) transfers a part from a machine or

storehouse slot to a slot aboard the robot.

• The operator place-part-at (Figure 2.3) transfers a part carried in one of the

robot’s part slots to a slot in a machine or storehouse.

• The operator travel (Figure 2.4) moves the robot between machines or between

a storehouse and a machine. Its cost depends upon the distance between the

origin and destination locations. With a longer distance, more production is

lost.

2.5. The Repair Robot Domain 36

• The operator activate-machine (Figure 2.5) returns a machine to production.

• The operator deactivate-machine (Figure 2.6) halts machine production, en-

abling the removal of its parts.

2.5.3 Computational Complexity

A valid plan can be found for any repair robot problem by retrieving and installing

the parts for each machine in an arbitrary order. Both the order of part installation

and the order of machine repair can be arbitrary. The length of the plan will be linear

in the number of parts that need to be installed.

Finding an optimal plan is NP-Complete. It is in NP because a valid plan can

be found in polynomial time. An instance of the traveling salesman problem can be

transformed into an instance of Robot Repair. Map each city to a machine. Each

machine has one broken part. The robot has a number of carrying slots equal to the

number of cities. The robot starts at the storehouse, which contains all the required

parts. All machines have a production rate of 1. The travel times between cities map

to the travel times between machines. Hence, if we can find an optimal plan for the

repair robot, we also have an optimal TSP tour.

2.5. The Repair Robot Domain 37

Get-part-from ?machine ?type ?robot-slot ?mach-slot

• Preconditions:

– not-machine-works ?machine

– robot-at ?machine

– machine-slot-full ?machine ?mach-slot

– robot-slot-empty ?robot-slot

• Add Effects:

– machine-slot-empty ?machine ?mach-slot

– robot-slot-full ?robot-slot ?type

• Delete Effects:

– machine-slot-full ?machine ?mach-slot

– robot-slot-empty ?robot-slot

• Cost Function:

– cost = cost + widgets-not-produced

Figure 2.2: The operator get-part-from

2.5. The Repair Robot Domain 38

Place-part-at ?machine ?type ?robot-slot ?mach-slot

• Preconditions:

– robot-at ?machine

– machine-slot-empty ?machine ?mach-slot

– robot-slot-full ?robot-slot ?type

• Add Effects:

– machine-slot-full ?machine ?mach-slot

– robot-slot-empty ?robot-slot

• Delete Effects:

– machine-slot-empty ?machine ?mach-slot

– robot-slot-full ?robot-slot ?type

• Cost Function:

– cost = cost + widgets-not-produced

Figure 2.3: The operator place-part-at

2.5. The Repair Robot Domain 39

Travel ?start ?finish

• Preconditions:

– ?start 6= ?finish

– robot-at ?start

• Add Effects:

– robot-at ?finish

• Delete Effects:

– robot-at ?start

• Cost Function:

– cost = cost +

(travel-time ?start ?finish * widgets-not-produced)

Figure 2.4: The operator travel

2.5. The Repair Robot Domain 40

Activate-machine ?machine

• Preconditions:

– robot-at ?machine

– not-machine-works ?machine

– ∀ mach-slot,

is-machine-part-slot ?machine ?mach-slot ⇒

machine-slot-full ?machine ?mach-slot

• Add Effects:

– machine-works ?machine

• Delete Effects:

– not-machine-works ?machine

• Cost Function:

– cost = cost + widgets-not-produced

Figure 2.5: The operator activate-machine

2.5. The Repair Robot Domain 41

Deactivate-machine ?machine

• Preconditions:

– robot-at ?machine

– machine-works ?machine

• Add Effects:

– not-machine-works ?machine

• Delete Effects:

– machine-works ?machine

• Cost Function:

– cost = cost + widgets-not-produced

Figure 2.6: The operator deactivate-machine

2.6. Summary 42

2.6 Summary

In this chapter, I defined the planning problem and gave an overview of its compu-

tational complexity. I described different categories of planning problems for which

valid plans can be found in polynomial time, and I demonstrated relationships be-

tween these categories. I articulated the impact of dead-end states and resource

consumption on the possibility of finding valid plans in polynomial time. I described

the characteristics of planning problems addressed by my research and gave several

examples. Finally, I defined the Repair Robot problem, the running example problem

found throughout my dissertation.

3

Planning Systems

This chapter provides an overview of planning systems described in the literature,

with a particular focus on papers relating to the work presented in this dissertation.

(For a general overview of the planning literature, see the collection of papers edited

by Allen, Hendler, and Tate [1].) In particular, Section 3.2 focuses on planners that

use search control to improve planner performance, Section 3.3 discusses different

approaches to the problem of replanning, and Section 3.4 discusses anytime planning.

3.1 Domain-Independent Planning

This section describes a selection of significant domain-independent planning algo-

rithms. A domain-independent planning algorithm only requires the user to specify

the predicate set and operator set when defining a planning domain, and initial world

state and goal state when specifying a planning problem to be solved. Many such

planners exist other than the ones described in this section; the ones discussed here

are included because of their wide influence and relationship to the work presented

in this dissertation.

43

3.1. Domain-Independent Planning 44

3.1.1 The STRIPS Planner

An early, highly influential planning system was the STRIPS planner of Fikes and

Nilsson [34]. STRIPS introduced what is now called the STRIPS operator, containing

a set of preconditions and postconditions. The preconditions are first-order predicate

logic clauses, and the postconditions are simple predicates that are added to or deleted

from a state. (See Section 2.2.1 for a formal description of STRIPS planning.)

The STRIPS algorithm searches for plans by starting at the goal state and deter-

mining what goal predicates are not true in the initial state. (This is called means-

ends analysis.) A search begins for an operator that has as its postconditions one

or more of the goal predicates. When such an operator is found, it becomes the last

operator in the plan, and a search commences to find operators that achieve either

one or more of the remaining goals, or one or more of the unsatisfied preconditions

of the operators already present in the plan. The search continues, building the plan

backwards, until either all goals and operator preconditions are satisfied either by

operator postconditions or the initial state, or it is determined that it is not possible

to add another operator to the plan. At that point, the algorithm backtracks and

tries to find operators to establish preconditions at a later point in the plan.

STRIPS was reasonably effective for small domains, but did not scale up to larger

problems. Bylander [17] has shown that general propositional STRIPS planning is

PSPACE-Complete, a result discussed in more detail in Section 2.3.2.

3.1.2 Graph-based Planning

The Graphplan algorithm of Blum and Furst [9] makes use of a data structure called

a planning graph to constrain the search process. It accepts STRIPS style operators

in its plan language, and its state representation is restricted to predicates. The first

3.1. Domain-Independent Planning 45

stage of the algorithm is to generate the planning graph. This graph can be generated

in polynomial time. The second stage of the Graphplan algorithm is to search the

planning graph for a plan. It generates a partial-order STRIPS plan. While it is

guaranteed to terminate, this search can take exponential time. For many domains,

however, it finds plans in reasonable amounts of time.

The planning graph is a directed, leveled graph with two kinds of nodes and three

kinds of edges. (A leveled graph is a graph in which the nodes can be partitioned into

disjoint sets such that the edges only connect nodes in adjacent levels.) The first level

is a proposition level and the levels from there alternate with action levels. The first

proposition level contains the initial world state. The first action level contains all

operators that could be applied in that state. The second proposition level contains

all predicates that could possibly be true after applying the actions in the action level

to the previous proposition level. Further levels are propagated in this fashion.

Edges represent relationships between actions and propositions. The action nodes

in action level i are connected by “precondition-edges” to the predicates in proposition

level i that are their preconditions, by “add-edges” to the predicates in proposition

level i + 1 that they add, and by “delete-edges” to the predicates in proposition level

i + 1 that they delete.

Two actions in an action level are considered to be mutually exclusive if no valid

plan could possibly contain both. Graphplan determines whether actions are mutually

exclusive in these two ways:

• Two actions interfere if either action deletes a precondition or add-effect of the

other.

• Two actions have competing needs if there is a precondition of each action that

are achieved by actions that are mutually exclusive of each other.

3.1. Domain-Independent Planning 46

In the empirical studies of the authors, these rules were sufficient for Graphplan to

find plans quickly in many domains. However, these rules do not exhaustively specify

all possible mutual exclusion relationships. The authors observed that determining

every single mutual exclusion relationship is equivalent to finding a legal plan, and

hence computationally intractable.

The Graphplan algorithm incrementally grows the planning graph until all goal

conditions are present in a proposition layer, and those goal conditions are not mu-

tually exclusive. It then does a backwards-chaining search through the graph to find

a plan. If it can’t find a plan, it grows the graph another level and tries again.

A number of other planning algorithms have subsequently made use of planning

graphs in various ways. One of the most interesting of these algorithms is the Fast

Forward planner of Hoffmann and Nebel [40]. It plans by doing forward-chaining,

that is, starting at the initial state and considering all operators whose conditions

are satisfied in that state. It generates a total-order STRIPS plan. Upon adding an

operator, it generates a new state and repeats the process until a state satisfying the

goals is encountered.

The operator to use is selected based on solving a relaxed planning problem, that

is, finding a plan that achieves all the goals while ignoring all delete effects. It uses

Graphplan to do this. Because delete effects are ignored, no actions are mutually ex-

clusive, and Graphplan runs in polynomial time. The operator for which the shortest

relaxed plan can be found is selected, and the algorithm proceeds from there. It does

not backtrack.

Fast-Forward does best in planning domains where deleted goal interactions are

not a serious issue, such as logistics problems akin to the delivery domain described in

Section 2.3.7.1. It does well on some Blocks World problems, but for some instances

the ignoring of delete effects gets it stuck in local minima. The same phenomenon

3.2. Planning with User-Assisted Search Control 47

occurs with domains containing dead ends (as defined in Section 2.3.5).

Another use of planning graphs is as preprocessors for other search techniques.

The Blackbox system of Kautz and Selman [42] uses a planning graph to generate a

SAT encoding of a planning problem. If a SAT encoding can be satisfied, it implies

the existence of a plan of a given length. The values of the SAT solution can be used

to construct a plan. One of several different SAT solvers is used to solve the SAT

encoding.

Blackbox did better empirically than Graphplan on several different planning

problems. However, its memory requirements for SAT encodings of many problems

are huge, so good performance has tended to be highly domain-dependent. Further-

more, whether instances of planning problems encountered in practice map well to

the SAT instances on which SAT solvers do well is still a matter of some debate (c.f.

[40]).

3.2 Planning with User-Assisted Search Control

Many planning systems eschew the domain-independent approach in favor of ap-

proaches where the user of the system provides extra information to the algorithm

to enable the search to be more efficient. Some of these systems enable the user to

specify a hierarchical decomposition of the planning problem for the planner to use

in its search. Other systems operate by doing a forward-chained search and using

user-supplied information to prune aggressively.

3.2.1 Hierarchical Task Networks

The earliest hierarchical task network (HTN) planning system was Sacerdoti’s NOAH

planner [55]. NOAH introduced the concept of partially-ordered planning; that is,

3.2. Planning with User-Assisted Search Control 48

orderings would only be added between operators when a conflict of some kind was

detected between them. It also added the concept of a “critic” that could make

constructive improvements to a plan being developed. Task-specific information was

encoded in “procedural nets”. The nets were networks of nodes. Each node repre-

sented an action at a certain level of detail, and had edges to other nodes that refined

that detail. Planning proceeded by finding a procedural net that could achieve a goal,

and then adding further actions by detailing the action specified by that net. Un-

fortunately, because NOAH could not backtrack, it would in some situations commit

actions that could lead it into dead ends.

The next task network based planner was the NONLIN planner of Austin Tate

[57], which was based loosely on NOAH. It extended the idea of “critics” from NOAH

into the concept of an “expert”. Experts provided guidance to the nodes in the task

network as to how to detail their actions if choices were available. Since backtracking

was permitted in order to avoid the incompleteness problems that plagued NOAH,

the experts were very important in helping the system to make good choices for action

detailing.

The NONLIN project has evolved over time into the O-Plan system [21]. O-Plan is

based on the same core ideas, but has numerous extensions to enable the encoding of

complex problems. In particular, O-Plan makes use of techniques from the operations

research literature to solve timing and resource constraints. The SIPE-2 planner [60]

is conceptually similar to O-Plan, but makes use of a different set of heuristics in

order to plan efficiently.

The Simple Hierarchical Ordered Planner (SHOP) of Nau et al. [47] grew out of

work in using HTN planning ideas in order to play bridge [56]. It operates similarly

to most of the other HTN planners, except that task reductions are done in the

same order in which the operators will be executed. As task networks are reduced to

3.2. Planning with User-Assisted Search Control 49

primitive actions, these actions are added to the plan in a forward-chaining manner.

Because this enables the complete world state to be available at all times, much more

aggressive pruning techniques can be implemented in SHOP than in partially-ordered

HTN planners.

Erol, Hendler, and Nau [32] proved some general computational complexity results

for HTN planning. They showed that STRIPS planning is essentially a special case of

HTN planning. Unsurprisingly, then, the computational complexity of HTN planning

was even worse than that for STRIPS planning. In particular, even without function

symbols, if no restrictions are placed on non-primitive tasks, and the HTN can be

partially ordered, planning can be undecidable in general. If the HTN is totally

ordered and variables are not allowed, HTN planning is provably exponential; if

variables are allowed, HTN planning is EXPSPACE-hard.

Restricting the task nodes to have at most one non-primitive task, following all

the primitive tasks, HTN planning is PSPACE-Complete if variables are not allowed,

EXPSPACE-Complete otherwise. Disallowing non-primitive tasks reduces the com-

plexity to NP-Complete. If only primitive tasks are allowed and the HTN must be

totally ordered, then a solution can be found by hill-climbing and polynomial time

planning becomes possible.

In spite of these complexity results, claims have often been made in the HTN

planning literature that HTN planners are useful for implementing polynomial time

planning algorithms. These claims are derived from observing that task networks can

be used to encode goal decompositions as described in Section 2.3.3. This use of task

networks accounts for much of the good empirical performance of HTN planners in

the literature (e.g. [47]).

3.2. Planning with User-Assisted Search Control 50

3.2.2 Planning Using Temporal Logic

The TLPlan planner of Bacchus and Kabanza [7] enables the user to specify search

control knowledge using temporal logic formulas. TLPlan uses a forward chaining

state-space search, and each state is checked against the search control formula. If the

state fails to satisfy the formula, then it is pruned. This state checking is made possible

by the use of total-order forward search. TLPlan generates total-order STRIPS plans.

(It can also generate plans in the ADL formalism of Pednault [50].)

The search control formulas are expressed using modal temporal logic. This logic

extends first-order predicate logic with always, eventually, until, next, and goal modal-

ities. Each modality except until takes one first-order predicate calculus formula as

an argument. Until takes two first-order formulas as arguments.

The always modality is true if its argument is true for all states in a forward

chain. Eventually is true if its argument is true at some state in a forward chain.

Next requires its argument to be true in the immediately succeeding state. Until is

true if the first argument remains true in a forward chain until the second argument

becomes true. Goal is true if its argument evaluates to true in the goal state.

Using these modalities, search control rules can be specified that enable the im-

plementation of polynomial time planning algorithms for certain domains, such as

the blocks world.

TALplanner [44] uses the TLPlan approach as a starting point in combination

with a more expressive temporal logic called TAL (Temporal Action Logic) [26]. Their

domain encodings had performance superior to TLPlan across a range of domains.

3.3. Plan Repair 51

3.3 Plan Repair

The ROGUE system [38] integrates a planner with an execution system for use on-

board a robot. When plan failures occur, ROGUE calls the planner to generate

new operators to accommodate the failure and bring the plan back on course. The

system was designed primarily for dealing with simple failures; if a failure requires any

significant amount of search, ROGUE can get tied up for quite some time generating

a new plan. Local subplan replacement avoids this problem because it can implement

anytime planning.

Plan repair in the O-Plan system [27] utilizes the automated planning system to

locate where in the plan problems have occurred. The system then informs the user

and makes recommendations for repairs. As O-Plan generates partial-order plans,

these recommendations tend to focus on isolating problematic subgraphs for user

attention. The user controls what repair is made to the plan. In contrast, using

local subplan replacement for plan repair is completely automated, requiring no user

intervention.

In the Cypress system [61], replanning occurs asynchronously when a plan failure

is detected. Execution is handled by a reactive system. If the reactive system cannot

handle a situation, it calls SIPE-2 [60] to replan the component of the plan that has

failed. As SIPE-2 generates partial-order plans, these replaceable plan components are

subgraphs that are selected with the intention of minimizing the impact of the change

on other parts of the plan. This is done by, for example, selecting subgraphs with a

minimal number of outgoing postconditions that are preconditions of later operators.

The reactive system continues to execute operators that have no interdependencies

with the failed subgraph. There is no explicit bound on the time needed to do the

replacement. In contrast, local subplan replacement can implement anytime planning.

3.3. Plan Repair 52

The CASPER system [20] uses a continual planning approach to plan repair.

In continual planning (see [25] for a survey), “planning” and “plan repair” are not

distinct from each other. The planner continually updates its plan to reflect changes

in the environment that are detected. CASPER is thus an example of an anytime

replanning system, as a plan is always available and constantly being repaired and

improved.

The most important difference between CASPER and using local subplan replace-

ment is that in CASPER there do not necessarily exist plan steps to achieve all system

goals at all times. At each iteration, the planner attempts to resolve conflicts and

achieve goals. Special purpose algorithms are used for devising plans for different

sorts of goals, and for resolving conflicts between them. Local subplan replacement

could, in theory, be one of the algorithms utilized by CASPER for plan updating.

Local subplan replacement could similarly be utilized by other continual planning

approaches in the literature [25].

Soar (see [53] for an overview) is an architectural framework and programming

language for implementing intelligent systems. Action selection in Soar operates as

follows ([45], also found in [53]). Soar uses a production system to select actions.

Each time an action is to be selected, every rule gets compared against every state

in the state set. When the production system is unable to select an action, either

through a lack of information, or an inability to decide between two or more rules, a

planner is invoked to resolve the problem. An explanation-based learning technique

called chunking is used to store the result of the planning process in the production

rule set.

As planning is done in Soar only to resolve problems as they occur, there is no

distinction between “planning” and “replanning” in the Soar environment. As with

many other systems, there is no bound on the time used for the planning process.

3.4. Anytime Planning 53

Again, replanning with local subplan replacement avoids this problem through its use

of anytime planning.

3.4 Anytime Planning

The planning algorithm of Elkan [30] finds plans using a search approach inspired

by logic programming, using a carefully engineered rule base. A plan is found by

trying to unify a binding for a special logic variable P with the assumption that

the goal state is true. Search proceeds in a back-chaining fashion. Each rule has a

postcondition to be established on its left-hand side and the preconditions that imply

that postcondition on its right-hand side. The search begins by finding a rule that

has a left-hand side that establishes the goal state. The search proceeds by trying to

bind the right-hand side of that rule.

The key difference between Elkan’s planning algorithm and Prolog-style search is

that Elkan used iterative deepening instead of depth-first search. The depth bound

for iterative deepening starts at 1. Each time that a plan cannot be found, the depth

bound is increased by 1 and a new search for a plan commences.

The system tries to prove that negated goals (and subgoals) are true by showing

that no proof exists for the un-negated version of that goal. If the depth bound cuts

off the search for a proof, then it is unknown whether or not that negated goal is true.

To make the algorithm sound, the negated goal must be presumed false.

However, by presuming that the negated goal is true when its truth value is

unknown, this algorithm becomes an anytime algorithm. The anytime progression is

that the algorithm first considers plans where negated goals are assumed to be true,

and then, as time permits, attempts to prove those negated goals true. When the

proofs fail, new plans are generated to take the negated goals into account. Plans

3.4. Anytime Planning 54

later in the progression have demonstratably more goals and subgoals that have been

proven sound, and hence are more likely to be valid plans.

This algorithm is able to find an initial plan in polynomial time. Because negative

preconditions can be assumed to be true, only positive predicates need to be achieved.

As backtracking is only necessary when a desired positive predicate gets deleted by

a negative postcondition, a single depth-first search will succeed in finding the (not

necessarily valid) initial plan.

The assumption upon which the anytime progression for replanning using local

subplan replacement is fundamentally different in that each plan in the progression is

assumed to be a valid plan. The anytime progression for Elkan’s algorithm is to gain

increased certitude of plan validity by progressively checking negative preconditions.

The Just-In-Case Scheduler of Drummond et al. [29] constructs a schedule, ana-

lyzes it for the parts that are most likely to fail, and adds alternatives to those points

creating what they call a “multiply contingent” schedule. The anytime progression

for this algorithm is the incremental addition of these contingencies as time permits.

The Just-in-Case scheduler is specialized for scheduling domains, and hence is not

applicable to the more general problem of task planning.

Dean et al. [24] discuss an approach to planning under time constraints in stochas-

tic domains. This approach consists of modeling a subset of the agent’s state space

(referred to as the envelope) and then generating a mapping of states to actions the

agent should take in each state (referred to as the policy). Transitions between states

are modeled probabilistically. That is, the agent performing some action in a given

state has a set of probabilities indicating the chance of a transition to each potential

successor state occurring. The construction of the envelope and policy is an itera-

tive process. They are initially generated very quickly (or provided a priori). Since

the envelope only contains a small subset of the total state space of the agent, the

3.4. Anytime Planning 55

agent may enter a state not included in the envelope. In that case, the envelope gets

extended and a new policy gets generated to deal with the extension to the enve-

lope. These extensions of the envelope constitute the anytime progression for this

algorithm.

The envelope is initially generated by performing a depth-first search through

the search space, starting at the initial state and attempting to reach the goal state.

Transitions from each state are considered in decreasing order of probability. A policy

is then generated using an iterative refinement algorithm. Because each stage of this

algorithm produces a strictly improving policy, once a first policy is available, it can

be stopped at any time and return a useful policy as a result. The main drawback

of this approach is that it requires the modeling of the environment and probabilistic

transitions in significant detail. Because of this specialization, it is only applicable

to planning problems in which each state transition has an associated probability.

Using local subplan replacement for anytime replanning does not require that level of

detail in environment modeling, and is applicable to domains where the cost function

is something different than probability of success.

The Planning by Rewriting (PbR) algorithm of Ambite and Knoblock [3] assumes

a fast algorithm is available for generating a valid plan for a particular problem, and

then uses plan-rewriting rules to incrementally improve the quality of the quickly-

generated plan. Plans are represented as partially-ordered sets of operators. There

are four basic types of transformations that are enabled by the rules:

• A reorder rule rearranges operators based on their algebraic properties, such as

commutative, associative, and distributive laws.

• A collapse rule replaces a subplan with a smaller subplan.

• An expand rule replaces a subplan with a larger subplan.

3.4. Anytime Planning 56

• A parallelize rule replaces a subplan with an alternative subplan that requires

fewer ordering constraints. This can be very useful in domains where multiple

agents can execute different parts of a plan.

These transformations are used to explore the neighborhood around the current

plan. Gradient descent techniques are used to explore the neighborhood. These gra-

dient descent techniques serve as the anytime progression for this algorithm. Random

walks and restarts are used in order to escape the local minima in which the system

can be trapped using gradient descent. Restarts rely upon the generation of alter-

native initial valid plans. Random walks rely on search spaces where a number of

different plans can be found in a search plateau. The search can be interrupted at

any time, and a valid plan will be returned, because the rules will only transform a

valid plan to another valid plan.

Unlike many other anytime planning algorithms, PbR does not depend upon a

particular cost function (such as probability) or a particular sort of problem (such as

scheduling or path planning). PbR has the disadvantage that the user must provide a

polynomial time algorithm for finding a valid plan, a set of rewriting rules for guiding

the improvement search, and a search strategy. The authors have used machine

learning techniques to help devise a set of rewriting rules [4]. These techniques, while

moderately effective, required very large training sets of data, and the degree of their

scalability remains an open question.

Unlike PbR, using local subplan replacement does not require any additional user-

provided search control beyond what was necessary to generate the initial plan. Fur-

thermore, the search in PbR is restricted to using local gradient descent techniques,

and is not guaranteed to ever find an optimal plan. Local subplan replacement can,

in theory, use a completely exhaustive global planner, and hence (given enough time)

can escape local minima and provide a plan that is optimal for the given maximum

3.4. Anytime Planning 57

depth. Although local subplan replacement will not likely be used with a totally

exhaustive planner in practice, the fact that it can do so in principle allows for the

possibility of using planning algorithms that provide good global approximations of

the optimal plan.

The main drawback of using local subplan replacement compared with PbR is

that there is no analogy to the parallel rewriting rule in PbR. This is because local

subplan replacement is limited to improving a total-order plan, and the partial-order

plan representation used by PbR permits the discovery of optimizations of this kind.

A number of anytime planning algorithms share an anytime progression in which

the plans found early in the anytime progression establish only the most important

goals, with later solutions in the progression achieving goals of lesser importance. Lo-

cal subplan replacement does not prioritize goals; all goals are equally important, and

it ensures that they are all achieved at all times. These approaches and local subplan

replacement are targeted at fundamentally different types of domains. When finding

a valid plan is difficult, prioritizing goals is a useful way to ensure that something of

value gets accomplished.

Blythe and Reilly [10] describe modifications to Prodigy [59] to produce an any-

time planner. Their variation keeps track of the best state seen so far in the state-space

component of Prodigy’s bi-directional plan search. The best state is defined in terms

of a utility function that assesses the worth of the top-level goals achieved in that

state. As the plan corresponding to this best state is returned if the planner gets in-

terrupted, the sequence of “best states” defines the algorithm’s anytime progression.

A similar system using decision-theoretic planning is described by Haddawy [37].

Briggs and Cook [14] describe an anytime planning system that works by using a

hierarchical planner that attempts to achieve the most “critical” goals first, and as

time permits attempts to achieve less critical goals. If the planner exhausts its fixed

3.4. Anytime Planning 58

upper bound node limit in the search for a solution, it uses a rule-based system to

reactively complete the plan. As the authors were not concerned about finding valid

plans (in the sense used in this dissertation, of plans that achieve all specified goals),

no guarantees about plan validity were made or asserted, and the authors alluded

to situations in which the system would not produce valid plans. Like Planning by

Rewriting [3], this algorithm is also independent of both cost function and domain.

Boddy and Dean [11] [12] and Zilberstein and Russell [63] [64] both describe sys-

tems for integrating multiple anytime algorithms for the control of a mobile robot.

Both systems determine allocations of available computational resources to the differ-

ent anytime algorithms based on their performance profiles. The performance profile

of an anytime algorithm shows the expected quality of the output of the algorithm

across a range of levels of available computational resources.

Boddy and Dean [11] present a system that uses two complementary anytime

planning algorithms for a robot delivery task. The first algorithm determines the

sequence of deliveries to be made; the second algorithm does path planning between

delivery destinations. The first algorithm solves a Traveling Salesman Problem. An

initial tour is found using a polynomial time approximation algorithm. The anytime

progression improves the initial tour using an edge-exchange algorithm.

The path planner uses an A* heuristic to find a path through a grid world envi-

ronment. Even a partial path is considered a useful result, as further path planning

can be performed while the partial path is being executed, and there are no “dead-

end states” in the environment they use. For the path planner, then, the anytime

progression is simply the degree to which the path plan has been completed.

Zilberstein and Russell [63] [64] discuss using multiple anytime algorithms for

controlling a mobile robot. One anytime algorithm is used for the robot’s sensing

capabilities and another anytime algorithm is used for the robot’s path planning. In

3.5. Heuristic Search 59

their implementation, the robot and its environment are simulated, so the tradeoff

between the time allocated to the sensing algorithm and the quality of the results of

sensing are artificial.

The anytime progression for the sensing algorithm is that its accuracy in identi-

fying obstacles and free space is proportionate to the running time it has available.

The path planning algorithm initially generates a very abstract plan very quickly. Its

anytime progression is that it progressively refines the level of detail of the path plan

by selecting the current “worst” plan segment, dividing it into two smaller segments,

and path planning each segment at a lower level of abstraction.

For both Boddy and Dean [12] and Zilberstein and Russell [64], the focus of the

research is on integrating the anytime algorithms, not on the algorithms themselves.

In contrast, my work is focused on producing an anytime strategy for plan repair

for task planning that is not tied to the constraints of any particular domain. It is

possible to produce a performance profile for anytime replanning using local subplan

replacement so that it could be integrated with other anytime algorithms in a frame-

work along the lines described by [12] and [64]. This possibility is discussed further

in Section 5.8.

3.5 Heuristic Search

The Joint and LPA* algorithm of Ratner and Pohl [52] is a polynomial time heuristic

search algorithm that relies on an idea akin to subplan replacement. Although their

particular application was finding solutions for the 15-puzzle, their algorithm is ap-

plicable to any heuristic search problem with an admissible A* heuristic. An initial

non-optimal path is generated using an approximation algorithm, and this path gets

improved by replacing sections of constant bounded length with the result of an A*

3.5. Heuristic Search 60

search for an optimal replacement. The length bound is set before execution begins

and does not depend upon the problem description. The presence of the length bound

is what enables the algorithm to complete in polynomial time.

The algorithm proceeds by incrementally attempting to replace subpaths at the

start of the path until a shrinkage in length is obtained or the replacement length

has reached the maximum. From that point, the remainder of the path is broken

into segments of the maximum length, and each segment gets replaced by the result

of the A* search. The algorithm completes after one pass through the path. The

Joint algorithm then repeats this process, but it centers the replacements on the

joints between the replacements from the first part of the algorithm, in an attempt

to optimize the “joints” between optimal paths.

These algorithms rely heavily on the presence of an admissible A* heuristic to

enable them to prune aggressively so that the length limit can be set relatively high.

Local subplan replacement as described in Chapter 4 does not rely on the particular

exhaustive search strategy employed. In the presence of a strategy that prunes ef-

fectively, local subplan replacement will be able to perform subplan replacements at

low levels very quickly, thus enabling it to progress to higher subplan levels promptly.

With more exhaustive searches, the low initial limit on search depth provided at low

subplan levels should enable the system to find at least some improvements relatively

quickly.

Thus, the incremental increasing of the subplan level by local subplan replacement

enables the improvement algorithm to adjust to both the quality of the underlying

search and the problem-instance-specific time available without any outside interfer-

ence. The Joint phase of their algorithm is simulated to some extent within subplan

replacement by the fact that the replacements with larger maximum search depths

will divide the plan into components that include the joints from previous iterations.

3.6. Summary 61

Another important distinction is that the end state for the operator subsequence

to be replaced in subplan replacement is not a complete world state; rather, it consists

only of those state elements necessary as preconditions for future operators and for

the establishment of system goals. This enables the consideration of a potentially

larger number of new subplans. The Joint and LPA* algorithm does rely upon a

complete world state description as its replacement target.

3.6 Summary

In this chapter, I gave an overview of existing planning systems. I described systems

that are domain-independent and I also described systems that make use of domain-

specific information in order to control and limit the amount of search they conduct.

I gave several examples of existing plan repair systems, none of which implement

anytime planning in such a way as to guarantee always having available a valid plan.

I described existing anytime planning systems, most of which also do not guarantee

always having available a valid plan. One system that does make this guarantee,

Planning by Rewriting [3], only does so under the assumption that a different system

has provided an initial valid plan quickly. Planning by Rewriting also lacks the

potential to exhaustively explore a search space given enough time. Local subplan

replacement is a plan repair system that implements anytime planning in such a way

as to guarantee always having available a valid plan, including the rapid generation

of the first plan in the anytime progression. It also can be configured to explore as

much of the search space as desired, given enough time.

4

Local Subplan Replacement

In this chapter, I describe the components of the anytime planning system I am eval-

uating. Section 4.1 briefly describes the components and how they interact. The

planning algorithms used by this system are described in Section 4.2. (These algo-

rithms are also used as a baseline for evaluating the system in Chapter 5.) Generating

initial valid plans is described in Section 4.3. Progressively improving these plans in

an anytime manner using local subplan replacement is described in Section 4.4. It

is this technique for progressive plan improvement that is the principal subject of

evaluation in this dissertation.

4.1 System Description and Motivation

Anytime planning using local subplan replacement proceeds as follows. Given an

original plan that has succumbed to a failure, it begins by quickly repairing the

failed plan. Then, it iteratively replaces subsections of the repaired plan in order

to improve its quality. To establish a progression necessary for the desired anytime

characteristics, the process begins by attempting to improve relatively small subplans,

62

4.1. System Description and Motivation 63

then progresses to consider longer and longer subplans.

In order to detect a plan failure, during plan execution the preconditions of each

operator are checked before it is executed. If any of these preconditions is false, then

a plan failure has occurred and it becomes necessary to replan.

Once the decision is made to replan, the anytime progression begins by using a

plan repair algorithm to generate a valid plan. This plan repair algorithm inserts

operators into the plan in order to restore operator preconditions that have become

false. It may also insert operators to achieve goals that are no longer being achieved

by other operators. It begins by adding operators that will establish the preconditions

for the first operator from the original plan that has not yet been executed. Once the

first operator has been established, the algorithm inserts operators to establish the

preconditions for the second operator. It proceeds forward one operator at a time. If,

when preconditions have been established for all operators, there are goals that are

still not established, the algorithm inserts operators to achieve each such goal. When

the plan repair algorithm is finished, the result is a valid repaired plan. The plan

repair algorithm is designed to execute quickly yet yield a valid plan.

Although the repaired plan is valid, it is not likely to be a high-quality plan. The

repair process retains a substantial proportion of the operators from the original plan.

This research investigates whether these retained operators can be effectively utilized

in constructing a high-quality plan. The search process that generated the original

plan considered many possible alternatives. The plan found by the original search

process was deemed superior to these alternatives. The anytime replanning process

will attempt to take advantage of these previously made good decisions.

The means by which the anytime replanning process utilizes material from the

original plan is to replace parts of the repaired plan while other operators from the

original plan remain. Subplan replacement begins by determining the operator sub-

4.1. System Description and Motivation 64

sequence to be replaced. Once that has been determined, a planner is invoked in

order to consider alternatives to the existing subplan. If the planner finds a superior

subplan, it will replace the existing subplan.

The locations within the repaired plan where subplan replacements will occur are

determined as follows. As mentioned above, during the plan repair process sequences

of operators are inserted in order to establish failed preconditions. Subplan replace-

ments are centered at the beginning and end of each of these sequences of inserted

operators. These subplan replacement locations are called anchors. Centering re-

placements on these anchors enables the systematic reconsideration of the operators

inserted by the plan repair algorithm.

The size of the subplan to be replaced is determined by the system-declared sub-

plan level. Each level indicates the fraction of the total number of operators in the

plan that gets replaced. When anytime replanning begins, the total number of sub-

plan levels N is specified. Replanning then begins at level 1. At each level L, the

size of the subplan replaced around each anchor is L
N

R, where R is the number of

operators in the repaired plan.

The search for each new subplan is limited in depth to the length of the original

subplan. At low subplan levels, the depth limit is low, resulting in replacements that

can be performed relatively quickly. As the subplan level increases, larger subplans

are considered for replacement. The searches at higher subplan levels take more time

than those at lower levels, but there is potential for greater improvement due to the

larger number of alternative plans considered. Increasing the subplan level is the

mechanism by which subplan replacement is used to implement anytime planning.

Both local subplan replacement and plan repair require an underlying planning

algorithm in order to add and replace operators. The planner I used for this work,

Find-plan, is of my own design. It is closely related to total-order, hierarchical task

4.2. Finding Plans 65

network planners such as SHOP [47] [48] (discussed in Section 3.2.1). It was designed

for the purpose of solving planning problems in domains in which valid plans can

be found in polynomial time but finding optimal plans is NP-Complete. It performs

depth-first forward-chaining to find plans. The depth-first searches are guided by a

rule base that indicates what operators to apply in order to achieve certain predicates.

The user can specify a maximum number of depth-first searches, a depth limit, and a

maximum number of node expansions. The user can also specify two different general

search strategies. The first strategy is similar to a traditional depth-first search. The

second strategy permutes the ordering of choices in each search in an attempt to

“sample” the search space more broadly than the first strategy, given the presence of

limits on the number of depth-first searches and nodes.

Find-plan is described in detail in Section 4.2. Plan repair is the subject of

Section 4.3. Local subplan replacement is described in detail in Section 4.4. The

overall integrated anytime planning system including the incremental increase of the

subplan level and the selection of anchors is described in Section 4.5.

4.2 Finding Plans

The Find-plan algorithm is used both by local subplan replacement and as a baseline

for evaluating the effectiveness of local subplan replacement. Find-plan uses depth-

first searches in order to find plans. In each depth-first search, operator sequences are

found for the achievement of one goal at a time. For each goal, a rule set indicates

the sequence of subgoals to solve. The rule set also specifies which operators to use

in order to solve “primitive” goals and subgoals.

Given a rule base that can guide any depth-first search to a valid plan (provided

such a plan exists), depth-first search can be used to implement anytime planning.

4.2. Finding Plans 66

The initial solution is the plan found by any single depth-first search, and the anytime

progression consists of performing additional depth-first searches in the hope of finding

a better plan. Because of this property, the algorithm described in this section can

be used as a baseline for evaluating the performance of local subplan replacement, in

addition to its use by the plan repair algorithm and local subplan replacement. This

is discussed in more detail in Chapter 5.

Find-plan constructs a directed acyclic graph containing a node representing each

top-level plan goal. Each edge in the graph indicates that the goal corresponding

to the originating node has higher precedence than the goal corresponding to the

destination node. Each depth-first search follows these precedence relationships when

constructing a goal ordering. Goals with no precedence relationship between them

are ordered nondeterministically.

This algorithm is very similar to the SHOP algorithm [47] [48]. (The SHOP

algorithm was described in Section 3.2.1.) It does not have all of the features of SHOP,

but it is easier to configure for my purposes, especially regarding the specification of

search limits and search strategies.

4.2.1 Predicate Rules

A rule exists for each predicate in the domain description that can be made true

by the application of plan operators. A rule is itself a first-order predicate. If this

first-order formula evaluates to false, then no plan can be found.

Figure 4.1 gives an example of a simple rule. Each rule is represented in prefix

notation. The rule attempts to make the predicate (robot-at ?machine) true. If

it is already true, the check predicate returns true. If it is false, then the rule binds

?robot-l to the robot’s current location and then adds the travel operator to the

current plan. The rule has no priority over any other rule, so the priority-over list

4.2. Finding Plans 67

is empty.

The rule set contains standard logical operators (and, or, and not), quantifiers

(exists and forall), and several special forms (check, achieve, choose, goal, and

default). It also contains primitive predicate symbols denoting an aspect of the

world state. For example, in Figure 4.1, robot-at is a primitive predicate relaying

information about the world state.

((robot-at ?machine)

(priority-over)

(or (check (robot-at ?machine))

(exists (?robot-l) (robot-at ?robot-l)

(achieve travel ?robot-l ?machine))))

Figure 4.1: Rule for Moving a Robot

A rule can be evaluated in two ways. First, it can be evaluated solely in terms of

assessing its truth value. In that case, the check and choose symbols simply return

the truth values of their arguments, and achieve and default return false. The goal

symbol returns true if its argument would be true in the goal state.

Second, it can be evaluated to generate plan operators to achieve the specified

predicate. It will return true if it succeeds and false otherwise. If it succeeds, it will

also have constructed the plan it found as a side effect. Evaluation of a primitive

predicate triggers the evaluation of its corresponding rule. For example, in the rule

shown in Figure 4.2, evaluation of (robot-at ?store) causes the robot-at rule

given in Figure 4.1 to be applied.

4.2. Finding Plans 68

The achieve symbol adds the specified operator with the specified arguments to

the plan, provided that the preconditions of the operator are true in the current state.

If it can add the operator it returns true, otherwise it returns false. The default

symbol returns true. The check symbol evaluates its argument solely in terms of

assessing its truth value. The logical operators and quantifiers return true or false

according to their traditional definitions. With conjunctions (i.e. and and forall),

if any argument or instantiation fails no others will be tried. With disjunctions (i.e.

or and exists), once an argument or instantiation returns success, no others will be

tried.

The choose symbol is used in order to introduce nondeterminism into the planning

algorithm encoded by the rules. The argument to choose can be any logical conjunc-

tion or disjunction. The planning algorithm will consider all possible orderings of the

arguments or instantiations of that logical conjunction or disjunction. Each ordering

constructs a distinct plan (if it finds one). The plan with the best quality (according

to the metric specified for the domain) is retained by choose.

Figure 4.2 shows how choose can be used. This rule guides the robot towards

obtaining a needed part. It has priority over any goal dictating that the robot be

at a particular location, as in order to obtain a part the robot may have to move.

The choose symbol tells the planning algorithm to consider retrieving a part of the

appropriate type from every possible storehouse. The try-first symbol tells the

planning algorithm to begin by trying to obtain a part from a storehouse at which

the robot is currently located.

Each rule set has a depth limit for its depth-first searches. If a depth-first search

attempts to generate a plan that exceeds this length, failure is returned. This depth

limit can be the same for all depth-first searches in a given domain, or it can depend

upon the predicate and numerical values of the initial world state. For example, for

4.2. Finding Plans 69

((robot-slot-full ?slot ?type)

(priority-over (robot-at ?a))

(or (check (robot-slot-full ?slot ?type))

(choose (exists (?store) (is-storehouse ?store)

(try-first (robot-at ?store))

(exists (?store-slot)

(machine-part-slot-type ?store ?store-slot ?type)

(and (check (machine-slot-full ?store ?store-slot))

(robot-at ?store)

(achieve get-part-from ?store ?type ?slot

?store-slot)))))))

Figure 4.2: Rule for Obtaining a Machine Part

4.2. Finding Plans 70

the Repair Robot domain, the depth limit is 2M + 6P , where M is the number of

machines and P is the total number of machine part slots. This depth limit reflects

the fact that a simple plan for solving a Repair Robot problem can require up to six

operators for installing each part1 and two operators for activating each machine.2

Figure 4.3 gives the top-level algorithm for applying a rule. Each rule is named

for the predicate it seeks to achieve. If that predicate is already true, there is no

reason to apply the rule, and Apply-rule returns true. Each rule is itself a predicate.

If it is a primitive predicate, it simply calls itself recursively for the rule for that

primitive predicate. If it is the default predicate, it returns true. Otherwise, all special

predicate symbols have their own parse rule for evaluating them in rule expressions.

The appropriate parser is then called and its return value is returned.

Figure 4.4 shows how to parse the achieve predicate. This is at the heart of the

planning algorithm because it is the only place where operators are added to the plan.

Before adding an operator, it ensures that the operator’s preconditions are true, that

none of its delete effects eliminates a higher-priority goal, and that the plan depth

limit has not been exceeded. It then adds the operator to the plan and updates the

world state with all of the add and delete effects of the operator. It then returns true

to indicate that it succeeded in adding an operator.

Figures 4.5 and 4.6 show how the and and or symbols are parsed. Apply-rule is

called for each of their arguments. In the case of and, plans must be found for all of

the arguments. For or, a plan need only be found for one of the arguments.

Figures 4.9 and 4.10 show how the quantifiers forall and exists are parsed. The

syntax is: (quantifier (?free-var) (condition ?free-var) (body)).

1(1) Travel to a storehouse, (2) unload a part currently held, (3) travel to another storehouse,

(4) grab a part, (5) travel to a machine, (6) install the part
2(1) Travel to the machine, (2) activate it

4.2. Finding Plans 71

Apply-rule(predicate, currentState, currentPlan, goalState)

If predicate is true in currentState, return true

Let rule = find-rule(predicate)

Let rule-pred be the top-level predicate in rule

If rule-pred is a primitive predicate:

Return Apply-rule(rule-pred, currentState, currentPlan,

goalState)

If rule-pred is default, return true

Otherwise, call the parser for the appropriate non-primitive

predicate and return its return value.

Pass rule-pred, currentState, currentPlan, goalState.

For parse-and, parse-or, parse-exists, and parse-forall,

pass false for permute

Figure 4.3: Apply-rule

4.2. Finding Plans 72

Parse-achieve(rule-pred, currentState, currentPlan, goalState)

Let operator be the instantiated plan operator specified by achieve

If any of these are true:

Any precondition of operator is false in currentState

Any delete effect of operator deletes any true goal that is

higher priority than rule-pred

Length of currentPlan exceeds depth limit

Then return false

Else:

Add operator to currentPlan

Update currentState with the effects of operator

Return true

Figure 4.4: Parse-achieve

Parse-and(rule-pred, currentState, currentPlan, goalState)

Let arg-list be a list of all arguments of rule-pred

Return Apply-conjunction-list(arg-list, currentState,

currentPlan, goalState)

Figure 4.5: Parse-and

4.2. Finding Plans 73

Parse-or(rule-pred, currentState, currentPlan, goalState)

Let arg-list be a list of all arguments of rule-pred

Return Apply-disjunction-list(arg-list, currentState,

currentPlan, goalState)

Figure 4.6: Parse-or

Apply-conjunction-list(list, currentState, currentPlan, goalState)

For each predicate in list:

If Apply-rule(predicate, currentState, currentPlan, goalState)

is false, return false

Return true

Figure 4.7: Apply-conjunction-list

4.2. Finding Plans 74

Apply-disjunction-list(list, currentState, currentPlan, goalState)

For each predicate in list:

Let planCopy = currentPlan

Let stateCopy = currentState

If Apply-rule(predicate, stateCopy, planCopy, goalState) is true

currentPlan = planCopy

Return true

Return false

Figure 4.8: Apply-disjunction-list

Parse-forall(rule-pred, currentState, currentPlan, goalState)

Let binding-list = Get-binding-list(get-free-variable(rule-pred),

currentState,

get-position(rule-pred))

Return Apply-conjunction-list(binding-list, currentState,

currentPlan, goalState)

Figure 4.9: Parse-forall

4.2. Finding Plans 75

Parse-exists(rule-pred, currentState, currentPlan, goalState)

Let binding-list = Get-binding-list(get-free-variable(rule-pred),

currentState,

get-position(rule-pred))

Return Apply-disjunction-list(binding-list, currentState,

currentPlan, goalState)

Figure 4.10: Parse-exists

Get-binding-list(freeVariable, currentState, condition)

Let list be an empty list

For each binding of freeVariable in currentState

If condition(binding) is true, add binding to list

Return list

Figure 4.11: Get-binding-list

4.2. Finding Plans 76

In both cases, all instantiations of the free variable of the quantifier that are true

given its condition are found. In the case of forall, a plan must be found that

makes body true for all possible instantiations; for exists, a plan must be found

for any one instantiation. For example, in the quantifier rule (exists (?store)

(is-storehouse ?store) (robot-at ?store)), a plan must be found to move the

robot to any one storehouse. Were the quantifier forall, the robot would have to

visit all of the storehouses.

Parse-choose(rule-pred, currentState, currentPlan, goalState)

Let choose-pred be the single argument of rule-pred

(choose-pred must be or, exists)

If choose-pred is or: arg-list = arguments(choose-pred)

If choose-pred is exists:

arg-list = Get-binding-list(get-free-variable(choose-pred),

currentState,

get-position(choose-pred))

Return Search-disjunction(arg-list, currentState, currentPlan,

goalState)

Figure 4.12: Parse-choose

The choose symbol is handled as shown in Figure 4.12. The code for this symbol

calls Search-disjunction to perform a separate depth-first search for each instantia-

tion of exists or each argument of or. Search-disjunction calls Find-best-plan,

described below in Figure 4.18, in order to solve the next goal once it has added

4.2. Finding Plans 77

Search-disjunction(list, currentState, currentPlan, goalState)

Let bestPlan be an empty plan

For each predicate in list

Let planCopy = currentPlan

Let stateCopy = currentState

If Apply-rule(predicate, stateCopy, planCopy, goalState) is true

Find-best-plan(planCopy, stateCopy, goalState, goalList,

goalGraph)

If cost of planCopy is better than the cost of bestPlan

bestPlan = planCopy

If bestPlan is empty

Return false

Return true

Figure 4.13: Search-disjunction

4.2. Finding Plans 78

operators to achieve predicate.

Parse-check(rule-pred, currentState, currentPlan, goalState)

If rule-pred’s argument is true in currentState, return true

Else return false

Note: achieve and default are considered to always be false

when checked by check

Figure 4.14: Parse-check

Figure 4.14 describes how the check symbol is parsed. This symbol is used when

it is desired for a predicate to simply have its truth value checked against the current

state without invoking a rule for any of the predicates.

Parse-goal(rule-pred, currentState, currentPlan, goalState)

If argument of rule-pred is true in goalState, return true

Else return false

Figure 4.15: Parse-goal

Figure 4.15 shows how the goal symbol is parsed. The goal symbol indicates

whether its argument is true in the goal state. It is used in practice in order to

determine whether the specified predicate argument is a goal. No plan actions will

be added to achieve this; it is purely informational.

4.2. Finding Plans 79

4.2.2 Finding a Plan

The Find-plan algorithm (shown in Figure 4.16) begins by creating a directed acyclic

graph that determines a partial ordering of the goals based on their priorities. It then

creates a goal list containing all the goals from the graph with no incoming edges. It

also creates an empty plan.

At this point, Find-best-plan (see Figure 4.18) is called. Each goal in the goal

list is selected as the starting point of a depth-first search. The search commences

for each goal by calling Find-plan-for-goal (Figure 4.19), which calls Apply-rule

(Figure 4.3). When Apply-rule has completed, the newly achieved goal is removed

from the goal graph and all nodes that have no incoming edges that were not already

in the goal list are added to the goal list. The depth-first search continues by starting

a depth-first search for each goal as before. Each depth-first search completes when

the goal list is empty or a call to Apply-rule returns false.

Find-plan(initialState, goalState)

Let goalGraph = make-goal-graph(goalState)

Let goalList be a list of all nodes in goalGraph with no

incoming edges

Let plan be an empty plan

Let best-plan be an empty plan

Let currentState be a copy of initialState

Return Find-best-plan(plan, currentState, goalState, goalList,

goalGraph)

Figure 4.16: Pseudocode for Find-plan

4.2. Finding Plans 80

Make-goal-graph(goalState)

Let goalGraph be an empty graph

For each goal g in goalState

Create a node for g in goalGraph

For each goal g in goalState

For every other goal h in goalState

If the rule for g indicates priority over h

Add a directed edge from g to h

Return goalGraph

Figure 4.17: Pseudocode for Make-goal-graph

4.2.3 Search Control

The amount of search performed by Find-plan can be limited by setting maximum

values for the total number of depth-first searches and the total number of world state

expansions.

If these maximum values limit the search to a small subset of the search space,

it is possible for the search to be concentrated in too narrow an area of the search

space. A particular danger is for most of the depth-first searches attempted within

the maximum to have in common all but a few operators towards the end of the plan.

In order to address this problem, when either maximum is set, the depth-first

searches can be divided into equally-sized groups. In each group, a different goal

from the goal list is the first goal to be solved. This way, each goal gets a chance to

be the first goal solved. Subsequent goal selections and choose points are also offset

4.2. Finding Plans 81

Find-best-plan(plan, currentState, goalState, goalList, goalGraph)

If goalList is empty return true

Let bestPlan be an empty plan

While goalList is not empty

For each goal in goalList

Let plan-copy = plan

Let state-copy = currentState

Let graph-copy = goalGraph

Let list-copy = goalList

Remove goal from list-copy

Let success =

Find-plan-for-goal(goal, plan-copy, state-copy, goalState,

list-copy, graph-copy)

If success is true and bestPlan is empty or

the cost of plan-copy is better than the cost of bestPlan

bestPlan = plan-copy

Return bestPlan

Figure 4.18: Pseudocode for Find-best-plan

4.2. Finding Plans 82

Find-plan-for-goal(goal, plan, currentState, goalState, goalList,

goalGraph)

Let success = Apply-rule(goal, currentState, plan, goalState)

If success is false, return false

Delete goal from goalGraph

Add to goalList all goals in goalGraph with no incoming edges

that are not already in goalList

Let success =

Find-best-plan(plan, currentState, goalState, goalList, goalGraph)

Return success

Figure 4.19: Pseudocode for Find-plan-for-goal

4.3. Valid Plan Repair in Polynomial Time 83

differently in each group. This helps make the search more heterogeneous.

4.2.4 Example Rule Set

A full formal description of the rule set used for the Repair Robot domain can be

found in Appendix A. This section gives a brief overview of the algorithm it encodes.

The top-level system goals are for each machine to be operational. For each

machine, the algorithm checks to see if all of its parts are in place. If any are not,

then the robot travels to a storehouse to retrieve all the parts the robot needs. It may

need to travel to multiple storehouses in order to do this. The storehouse to visit is

chosen nondeterministically.

Once the robot has reached a storehouse and retrieved all parts from that store-

house that could help in repairing the current machine, it nondeterministically chooses

whether to fill each empty robot slot with a part for another damaged machine. It

makes a nondeterministic choice for every empty machine part slot belonging to an-

other broken machine. It may choose to retrieve the part or ignore that machine

entirely.

At this point, the robot returns to the machine it was originally trying to repair,

and replaces as many broken parts as possible. It continues to retrieve parts for the

machine and install them until all broken parts have been replaced. At that point,

the robot activates the machine, enabling it to resume production.

4.3 Valid Plan Repair in Polynomial Time

In this section, I present an algorithm for repairing failed plans. Because this algo-

rithm returns the first plan in the anytime progression, it is important that it execute

quickly. In general, repairing a failed plan can be as computationally complex as

4.3. Valid Plan Repair in Polynomial Time 84

generating a new plan from scratch [49]. Hence, this plan repair algorithm requires,

as described in Section 2.3.2, that a valid plan can be found in polynomial time.

The objective of the plan repair algorithm (see Figure 4.20 and Figure 4.21 for

pseudocode) is to transform the failed plan into a valid plan without regard to the

cost of the resulting plan. It accomplishes this by examining each of the operators

in the failed plan (starting with the first operator) and determining if any of its

preconditions are false. If so it invokes Find-plan in order to generate a plan with

the failed operator’s preconditions as its goal. If it is unable to find a plan to meet

the failed operator’s preconditions, it deletes the failed operator entirely and moves to

the next operator. If the plan repair algorithm has checked all the plan operators and

ensured that their preconditions are true, and there remain goal conditions that are

not true, it calls Find-plan one more time to add operators to the end of the plan that

will achieve the outstanding unachieved goals. It saves the locations of the inserted

operators in the array newOpNums in order to enable local subplan replacement to

select anchor points.

The parameters of Repair-plan are:

• currentState: The world state following the plan failure.

• goalSet: The top-level plan goals.

• failedPlan: A plan containing all the operators of the original plan that have

not yet been applied.

4.3.1 Correctness

The algorithm Repair-plan is correct if it always returns a valid plan (as defined in

Section 2.2.1). The key elements of a valid plan are:

4.3. Valid Plan Repair in Polynomial Time 85

Repair-plan(currentState, goalSet, failedPlan)

Let repairedPlan be a plan with no operators

Let newOpNums be an empty list

For each operator currentOp in failedPlan

Repair-operator(currentState, currentOp, repairedPlan)

If any goals are false in currentState

Let planTail = Find-plan(currentState, goalSet)

If a plan is found

For each operator tailOp in planTail

Add tailOp to repairedPlan

Add the position of tailOp in repairedPlan to newOpNums

Apply tailOp to currentState

Else

Return failure

Return repairedPlan and newOpNums

Figure 4.20: Plan Repair

4.3. Valid Plan Repair in Polynomial Time 86

Repair-operator(currentState, currentOp, repairedPlan)

If all preconditions of currentOp are true

Add currentOp to repairedPlan

Update currentState with effects of currentOp

Else

Let patchGoals = all preconditions for currentOp

Let patchPlan = Find-plan(currentState, patchGoals)

If a plan is found

For each operator patchOp in patchPlan

Add patchOp to repairedPlan

Add the position of patchOp in repairedPlan to newOpNums

Apply patchOp to currentState

Add currentOp to repairedPlan

Apply currentOp to currentState

Else

Return

Figure 4.21: Plan Operator Repair

4.3. Valid Plan Repair in Polynomial Time 87

1. For each operator, all of its preconditions are true in the state in which the

operator is to be applied.

2. After all operators have been applied, all goal predicates are true in the resulting

state.

For a plan to be invalid, there need only exist one false precondition for one

operator, or one false goal predicate.

For the purposes of demonstrating the correctness of the above algorithm, I make

the following assumptions:

1. Find-plan produces a valid plan if a valid plan exists

2. Find-plan will not produce an invalid plan

3. It is not possible for an operator to transition to a dead-end state (defined

in Section 2.3.5). This assumption may hold true either because the operator

preconditions disallow the application of the operator to a state in which its

postconditions could lead to a dead-end state, or because its postconditions are

simply incapable of transforming any world state into a dead-end state.

The correctness of Repair-plan follows directly from the above assumptions. If

Repair-plan does find a plan, each operator in the plan will have all of its precondi-

tions true because:

• The operator was present in the original plan, and any false preconditions it

had were handled by adding operators using Find-plan, or

• The operator was added by Find-plan, which produces valid plans.

4.3. Valid Plan Repair in Polynomial Time 88

It also follows that every goal will be established by the plan, because either the

goal was established by operators present from the original plan, or Find-plan added

operators to establish the goal.

4.3.2 Computational Complexity

Let o be the number of operators in the failed plan. Let p be the maximum number

of preconditions of any operator (or the total number of goals if it is greater), and e

be the maximum number of effects of any operator. Let P (S, g) be the computational

complexity of invoking the planner to find a plan q(S, g) for g goals and initial state

S, let L(q(S, g)) be the length of q(S, g), and let Lmax(q(S, g)) be the length of the

longest plan q(S, g) that P (S, g) can generate. Let S be the number of elements in

the initial world state (stored as a red-black tree). Let So be the number of elements

in the world state following the application of operator o.

The maximum number of elements that can be contained in any world state is

Smax = S + oeLmax(q(g)). This is derived from observing that for each operator in

the failed plan, Lmax(q(g)) additional operators may be inserted. Each plan operator

can add up to e elements to a world state.

Determining if any preconditions are false for a single operator a is O(p log Smax).

For each precondition, we could have to do a red-black tree lookup (O(log Smax)).

Finding a plan for the precondition set for that operator is O(P (Sa, p)). Adding any

operator to the new plan and updating the state accordingly is O(e log Smax).

We can assume that P (Smax, p) is polynomial in Smax and p by setting a constant

upper bound on the number of plans Find-plan is allowed to consider.

The overall complexity of the algorithm is:

O(o(p log Smax + P (Smax, p) + L(p)e log Smax))

4.4. Using Local Subplan Replacement to Improve Plans 89

4.4 Using Local Subplan Replacement to Improve

Plans

The purpose of replacing subplans of a repaired plan is to attempt to improve selected

operator subsequences while retaining the remainder of the existing plan, thus seeking

to exploit some of the good decisions that were made in the original process of plan

generation. Local subplan replacement consists of selecting subplans in the repaired

plan and constructing new plans for connecting the precondition state of that subplan

and its postcondition state. The plan resulting from this replacement is substituted

for the current repaired plan in the event that it signifies a cost improvement.

The locations within the repaired plan where subplan replacements will occur is

determined as follows. During the plan repair process (see Section 4.3) sequences of

operators are inserted in order to establish failed preconditions. Subplan replacements

are centered at the beginning and end of each of these sequences of inserted operators.

These subplan replacement locations are called anchors. Centering replacements on

these anchors enables the systematic reconsideration of the operators inserted by

Repair-plan.

4.4.1 Replacing Subplans

Figure 4.22 contains pseudocode for local subplan replacement. The first parameter,

plan, is the plan to be modified. The second parameter, startState, is the world

state after the occurrence of the plan failure. The third parameter, goalSet, con-

tains all the goals for plan. The fourth and fifth parameters, subplanStartOp and

subplanEndOp, are the operator numbers of the first and last operators of the subplan

to be considered for replacement.

4.4. Using Local Subplan Replacement to Improve Plans 90

Replace-subplan begins by computing subStartState, the initial state for the

subplan. It does this by applying the postconditions of all operators that precede the

subplan in plan to startState. Next, it generates subEndState, the state resulting

from applying the operators in the current subplan. Then, it determines what predi-

cates from subEndState are relevant to achieving goals and preconditions by calling

Find-subplan-goals (described below in Section 4.4.2). Finally, it creates a new

plan by replacing the subplan with the result of a call to Find-plan. If the resulting

new plan is superior in cost to plan, the new plan is returned.

The Op-before and Op-after functions referred to in Figure 4.22 return the

immediately preceding or immediately following operators from the plan, respectively.

The Replace-subplan algorithm has the following properties:

• Any plan returned will be a valid plan, given a valid plan as input.

• The plan returned will be equal to or lower in cost compared to the input plan.

• Its worst-case execution time is the execution time of Find-plan plus the exe-

cution time for Find-subplan-goals.

The property that the cost will be lower follows immediately from the final if

statement.

Generating subStartState and subEndState in the worst case requires check-

ing and changing each state predicate for every operator. This is bounded above

by O(ns), where n is the number of operators in the original plan and s is the

maximum number of predicates in a world state. The computational complexity of

Find-subplan-goals has a higher upper bound than O(ns), dominating the com-

plexity of generating subStartState and subEndState.

There are two possible cases to consider regarding whether Replace-subplan will

always return a valid plan. In the first case, the subplan discovered is equal or greater

4.4. Using Local Subplan Replacement to Improve Plans 91

Replace-subplan(plan, startState, goalSet, subplanStartOp,

subplanEndOp)

let subStartState = Apply-subplan(plan, startState,

plan.firstPlanOp,

Op-before(subplanStartOp))

let subEndState = Apply-subplan(plan, subStartState,

subplanStartOp,

subplanEndOp)

let subGoalSet = Find-subplan-goals(plan, goalSet, subEndState,

Op-after(subplanEndOp),

plan.finalPlanOp)

let newPlan = append(plan.get-subplan(plan.firstPlanOp,

Op-before(subplanStartOp)),

Find-plan(subStartState, subGoalSet)

plan.get-subplan(Op-after(subplanEndOp),

plan.finalPlanOp))

if newPlan.plan-cost < plan.plan-cost

return newPlan

else

return plan

Figure 4.22: Local Subplan Replacement

4.4. Using Local Subplan Replacement to Improve Plans 92

in cost compared to the subplan it seeks to replace. In that case, the parameter plan,

already a valid plan, is the plan returned.

In the second case, the subplan discovered is inserted into plan. To determine

whether a valid plan is returned, we must determine whether appending the three

components results in a valid plan. The Find-subplan-goals function (see Section

4.4.2 for details) is guaranteed to return a list of all the goals the subplan must

accomplish in order to meet the operator preconditions of the operators following the

subplan as well as any goals achieved by the original subplan.

The parts of the original plan outside the subplan are unchanged; hence, any goals

they achieve are still achieved, and any preconditions they achieve are still achieved.

Find-plan returns a plan that achieves goals that suffice to compensate for all useful

things done by the original subplan. Concatenating these three subplans together,

then, results in a valid plan.

The Replace-subplan algorithm would still work if, instead of determining a goal

set for the subplan based on the preconditions of the operators that follow, the state

resulting from applying the original subplan was used as the goal set instead. Using

the preconditions as goals instead of the complete resulting state allows a larger space

of potential subplans to be considered.

4.4.2 Finding the Goal Set for a Subplan

Figure 4.23 contains pseudocode for an algorithm to determine the goal set for a

subplan. The first parameter, plan, is the plan for which a subplan is being replaced.

The second parameter, goalSet, contains all the top-level goals for the plan. The

third parameter, postSubplanState, is the world state description after the appli-

cation of the postconditions of the subplan that is to be replaced. The fourth and

fifth parameters, startOp and endOp, are the operator numbers of the first and last

4.4. Using Local Subplan Replacement to Improve Plans 93

operators of the subplan to be replaced.

All predicates in postSubplanState might be goals for the subplan. Some of

them, however, may be extraneous, in that they might not establish any goals or

preconditions of operators in the remainder of the plan. Find-subplan-goals seeks

to eliminate these extraneous predicates while preserving all of the essential ones.

For each operator, the call to Update-subplan-goals adds to subplanGoals any

predicates from subplanGoalProspects that achieve a precondition of the current

operator. The final call to Update-subplan-goals after the loop does the same

thing for any remaining top-level goals. Update-subplan-goals is described below

in Section 4.4.3.

The Find-subplan-goals algorithm has the following properties:

• If all predicates returned in subplanGoals are true prior to the application

of startOp, then all preconditions for operators starting at startOp will be

established before the application of each relevant operator.

• When all operators have been applied, all goals will be true.

• subplanGoals does not contain any predicates that do not either establish

preconditions of operators or goals.

• Worst-case execution time is O(n(e log s+s(Pcp+log s))), where n is the number

of operators, e is the maximum number of effects for a precondition, s is the

number of states, p is the maximum number of preconditions for an operator,

and Pc is the worst-case complexity for determining if a predicate satisfies a

precondition.

To determine the worst-case execution time, we multiply the sum of the cost of

apply-operator and update-subplan-goals by the number of operators in the plan.

4.4. Using Local Subplan Replacement to Improve Plans 94

Find-subplan-goals(plan, goalSet, postSubplanState, startOp, endOp)

let subplanGoalProspects = postSubplanState

let currentState = postSubplanState

let subplanGoals = {empty set}

for op = startOp to endOp

update-subplan-goals(currentState, subplanGoals,

subplanGoalProspects, preconditions(op))

let currentState = apply-operator(op, currentState)

update-subplan-goals(currentState, subplanGoals,

subplanGoalProspects, goalSet)

return subplanGoals

Figure 4.23: Finding Subplan Goals

4.4. Using Local Subplan Replacement to Improve Plans 95

Applying an operator requires O(log s) computation for each effect of the operator,

as it requires updating a red-black tree (which is how the world state is stored). The

worst-case execution time for updating the subplan goals is described in Section 4.4.3.

SubplanGoalProspects contains all of the predicates established by the original

subplan. Each predicate must be classified as either establishing a precondition or

goal, or superfluous. Demonstrating the properties above requires demonstrating that

Find-subplan-goals properly classifies all predicates from subplanGoalProspects.

Hence we must demonstrate that all predicates that are not superfluous have been

added to subplanGoals by the time Find-subplan-goals terminates. We must also

demonstrate that no superfluous predicates get added to subplanGoals.

We will demonstrate these properties by induction. In the base case, there are

no operators that follow, the loop does not execute, and no predicates get added to

subplanGoals. At that point, Update-subplan-goals is called and all goals present

in currentState get added to subplanGoals (as described and demonstrated in Sec-

tion 4.4.3). No superfluous predicates have been added, as Update-subplan-goals

will only add predicates from goalSet.

In the inductive step, we assume that the preconditions for all operators already

examined have been added to subplanGoals. Update-subplan-goals has two effects

(as described and demonstrated in Section 4.4.3). First, all preconditions for the cur-

rent operator present in subplanGoalProspects get added to subplanGoals. Second,

all predicates in subplanGoalProspects that are no longer true in currentState get

removed from subplanGoalProspects. Any precondition that has been deleted can-

not be expected to satisfy a precondition for a future operator; it will have to be

added subsequently by a later operator if it is needed.

In summary, predicates are only added to subplanGoals if they establish a precon-

dition of a future operator or a goal, and predicates that are negated before satisfying

4.4. Using Local Subplan Replacement to Improve Plans 96

a precondition or goal can never be added.

4.4.3 Classifying Subplan Goals

Figure 4.24 contains pseudocode for an algorithm to determine what prospective

goal predicates are relevant to achieving any of a set of specified preconditions. The

first parameter, currentState, is the world state resulting from applying all previous

operator postconditions. The second parameter, subplanGoals, will contain all of the

preconditions of future operators that need to be achieved by this subplan. The third

parameter, subplanGoalProspects, contains all of the candidate goal predicates.

The fourth parameter, preconditions, contains the operator preconditions (or goals)

that must be accomplished for this operator.

For each potential goal, Update-subplan-goals first checks to see if it is false. If

so, if it is important, it must be established by a later precondition, so it is removed

from the candidate goal set. The potential goal is then checked against every predicate

in preconditions. If it establishes any of them, it is added to the goal set.

Update-subplan-goals has the following properties:

• All predicates from subplanGoalProspects that are false in currentState are

removed from subplanGoalProspects. This property is important in order to

prevent “false positives” from being added to subplanGoals.

• All predicates from subplanGoalProspects that are in preconditions get

added to subplanGoals

• Worst-case execution time is O(s(Pcp + log s)), where s is the number of states,

p is the maximum number of preconditions for an operator, and Pc is the worst-

case complexity for determining if a predicate satisfies a precondition.

4.4. Using Local Subplan Replacement to Improve Plans 97

Update-subplan-goals(currentState, subplanGoals

subplanGoalProspects, preconditions)

for each predicate in subplanGoalProspects

if predicate is false in currentState

remove predicate from subplanGoalProspects

else

for each precondition in preconditions

if predicate establishes precondition

add predicate to subplanGoals

remove predicate from subplanGoalProspects

Figure 4.24: Classifying Subplan Goals

The first two properties follow immediately from the above pseudocode. It is impor-

tant to note that it is first determined whether a predicate is superfluous before it

is checked against the preconditions; in the other order, superfluous predicates could

get added.

The worst-case execution time follows from multiplying the number of iterations

of the outer loop by the execution time of the interior. Checking to see if a predicate

is false is O(log s) because the states are stored in a red-black tree. The complexity of

checking to see if a predicate establishes a precondition depends upon the complexity

of the precondition itself. If the precondition is simply a predicate, it is constant

time. If the precondition contains a quantifier, it can require checking every possible

instantiation of the quantifier (up to O(s) checks for each quantifier).

4.5. Selecting Subplans to Replace 98

4.5 Selecting Subplans to Replace

The center of each subplan replacement is called an anchor. There is an anchor for the

start and end of each sequence of operators inserted by Repair-plan. Replacements

proceed in order of increasing size of the replaced subplan.

The number of subplan levels specified determines the granularity of this anytime

planning algorithm. Let L be the current subplan level, N be the total number of

subplan levels, and R be the number of operators in the plan returned by the call to

Repair-plan. The size of the subplan replaced at level L is L
N

R. That is, the current

level specifies the fraction of the plan that is to be replaced at each anchor. Figure

4.25 gives pseudocode for the Local-replan function. Local-replan iteratively calls

Replace-subplan for each anchor at each subplan level. It incorporates the above

formula for determining subplan size based upon subplan level.

Local-replan has five parameters. Plan is the plan that failed. StartState

represents the current world state after the plan failure that triggered this plan repair

episode. GoalSet contains the current system goals. NumLevels is the total number of

subplan levels (that is, the variable N used above). MaxLevel is the maximum subplan

level for which a replacement will actually occur on this run of Local-replan. By

calling Local-replan with varying values for max-level, we can simulate different

interruption times.

The Local-replan function has the following properties:

• fixedPlan is always a valid plan.

• The cost of fixedPlan never decreases.

Both of the above properties follow immediately from the same properties of

Replace-subplan (see Section 4.4). The quality of plans produced by this algorithm

is determined solely as the result of experimentation, as described in Chapter 5.

4.5. Selecting Subplans to Replace 99

Local-replan(plan, startState, goalSet, numLevels, maxLevel)

let (fixedPlan, newOperatorNums)

= Repair-plan(plan, startState, goalSet)

let subplanAnchors = Find-subplan-anchors(newOperatorNums)

for level = 1 to maxLevel

let subplanSize = fixedPlan.num-operators * level / numLevels

for each subplanAnchor in subplanAnchors

let (subplanStartOp, subplanEndOp)

= Compute-subplan-start-end(subplanAnchor, subplanSize,

fixedPlan)

let oldPlanSize = fixedPlan.num-operators

fixedPlan = Replace-subplan(fixedPlan, startState, goalSet,

subplanStartOp, subplanEndOp)

Update-subplan-anchors(subplanAnchors, subplanAnchor,

subplanEndOp,

oldPlanSize - fixedPlan.num-operators)

return fixedPlan

Figure 4.25: Anytime Replanning

4.6. Summary 100

Three important helper functions used by Local-replan are:

• Find-subplan-anchors

• Compute-subplan-start-end

• Update-subplan-anchors

Find-subplan-anchors determines the anchor points for the subplan replace-

ment. For each operator that was inserted by Repair-plan, if it is the start or end

of a sequence of inserted operators, it gets added to the list of subplan anchors.

Compute-subplan-start-end is described in Figure 4.26. It determines the op-

erators where the subplan starts and ends. The subplanAnchor parameter indicates

where the replacement will be anchored. The subplanSize parameter gives the size

of the replacement, and plan is the plan upon which the replacement will be per-

formed. The function determines the start and end operators based on anchoring a

subplan of subplanSize around subplanAnchor.

The first line of code ensures that the first subplan operator is not lower than the

index of the first operator of the plan. The last section of code ensures that the last

subplan operator is not greater than the index of the last operator in the plan. In

either case, a subplan of the full size is replaced; however, the anchor is effectively

moved forward or backward accordingly.

Figure 4.27 shows how anchors are gradually eliminated. An anchor gets removed

when it falls within the radius of another anchor.

4.6 Summary

In this chapter, I have described an anytime replanning algorithm, Local-replan. It

utilizes Plan-repair, an algorithm that can find a valid repaired plan in polynomial

4.6. Summary 101

Compute-subplan-start-end(subplanAnchor, subplanSize, plan)

subplanStartOp = maximum(subplanAnchor - (subplanSize / 2),

plan.firstPlanOp)

subplanEndOp = subplanStart + subplanSize - 1

if subplanEndOp > plan.lastPlanOp

subplanStartOp -= (subplanEndOp - plan.lastPlanOp)

subplanEndOp = plan.lastPlanOp

Figure 4.26: Finding Subplan Boundaries

Update-subplan-anchors(subplanAnchors, currentAnchor, subplanEndOp,

numOpsRemoved)

subtract half of numOpsRemoved from currentAnchor

for each subplanAnchor in subplanAnchors later than currentAnchor

if subplanAnchor <= subplanEndOp

remove subplanAnchor from subplanAnchors

else

subtract numOpsRemoved from subplanAnchor

Figure 4.27: Updating Anchors

4.6. Summary 102

time, and Replace-subplan, an algorithm that can improve the quality of an existing

valid plan by replacing a subplan. I have shown that the running time of these algo-

rithms is dominated by the running time of the planning algorithm used for selecting

operators (i.e. Find-plan). That is, these algorithms introduce no extra worst-case

complexity beyond that of Find-plan. I did not show any provable guarantees about

the magnitude of plan quality improvements using these algorithms. I have only been

able to obtain that information through experimentation, as described in Chapter 5.

I also described a new anytime planning algorithm, Find-plan, that uses depth-first

search. This algorithm is both called by Plan-repair and Replace-subplan, and is

also used as a baseline for evaluating the performance of Local-replan. Find-plan is

the first planner to take advantage of the assumption that a single depth-first search

can find a valid plan in order to implement anytime planning.

5

Experimental Evaluation

The goal of this research is to determine whether local subplan replacement provides

an effective means for organizing an anytime search for a plan in the context of repair-

ing a preexisting plan that has encountered a failure. Local subplan replacement is

intended to utilize good decisions made during the search for the preexisting plan. By

first inserting operators into this plan to restore it to validity, and then progressively

improving it by replacing subplans, the hope is that good operator sequences found

for the original plan will be preserved, contributing to a high-quality repaired plan.

My experiments utilized both the basic version of Find-plan as described in

Section 4.2 and the modified version from Section 4.2.3. Each served both as a

baseline and for generating new subplans, yielding four total algorithms:

• LocalSub-1 is local subplan replacement using unmodified Find-plan

• Baseline-1 is unmodified Find-plan serving as a baseline

• LocalSub-2 is local subplan replacement using modified Find-plan

• Baseline-2 is modified Find-plan serving as a baseline

103

104

The Baseline algorithms here were organized as anytime planning algorithms (as

discussed in Section 4.2). For each run of a LocalSub algorithm, the corresponding

Baseline algorithm is also executed. The Baseline run is given a search limit equal

to the number of nodes expanded by the LocalSub run. This enables the Baseline

algorithm to provide a frame of reference for the ability of the LocalSub algorithms

to organize an anytime search for a plan.

In each experiment, an initial plan for repairing broken machines in the Repair

Robot domain (described in Section 2.5) experiences a sequence of failures as it is

being executed. After each failure, the plan currently being executed is first repaired;

it is then improved using local subplan replacement. The corresponding baseline made

no use of the original plan; it generated a new plan with the world state subsequent

to the plan failure serving as its initial state.

As described in Section 4.5, the LocalSub algorithms replace subplans of increas-

ing size depending upon the amount of time available. The progression of increasing

subplan size is expressed in terms of subplan levels. Each level indicates the frac-

tion of the total number of operators in the plan that gets replaced. Performance

was measured after each subplan level in order to investigate the dynamics of how

LocalSub improves plans given varying amounts of search.

In order to understand the dynamics of LocalSub in different situations, experi-

ments were varied along several different axes including failure severity and the size

of the initial plan. Failure severity is assessed because different types of failures can

disrupt the original plan to different degrees, and it is important to understand how

different amounts of disruption affect the performance of local subplan replacement.

Plan length is important because local subplan replacement may have a greater ad-

vantage with more material available from an original plan to utilize.

In summary, I decided to evaluate the ability of local subplan replacement to

105

organize an effective anytime search by answering the following research questions:

1. How does the overall performance of local subplan replacement compare to the

baseline algorithms?

2. To what extent does local subplan replacement effectively utilize the decisions

made by the original search process?

3. How does the length of the initial plan influence local subplan replacement?

4. How do variations in failure severity influence the plans returned by local sub-

plan replacement?

Here are some summary answers to the research questions:

• Regarding question 1, the overall average performance of LocalSub-1 was su-

perior to that of Baseline-1, while LocalSub-2 and Baseline-2 were approx-

imately equivalent. At levels 1 and 2, LocalSub-2 had a higher average cost

than Baseline-2; at higher levels, LocalSub-2 had a lower cost.1 Because

LocalSub-1 so strongly dominated the performance of Baseline-1, most of

the remaining analysis performed focused on LocalSub-2 and Baseline-2.

• Regarding question 2, I measured the utilization based on the percentage of

operators in each new plan that could be found in the original plan. I used

this same metric to determine the resemblance between the plans discovered

by each baseline and the original plan. LocalSub-1 and LocalSub-2 both had

a consistently higher correspondence to the original plan, indicating that the

original plan does indeed have a strong influence on the result of the search.

1Recall that in the Repair Robot domain, plan cost refers to the total amount of lost production.

Hence, a plan with lower cost is preferable.

5.1. Experiment Design 106

• Regarding question 3, the length of the initial plan had a very significant impact

on relative performance, with longer initial plans being utilized more effectively

than shorter ones by LocalSub-2.

• Regarding question 4, plans generated by Baseline-2 for handling the more

severe failures had a lower average cost than those generated by LocalSub-2,

while the reverse was the case with the less severe failures. Plans that handled

severe failures well tended to utilize fewer operators from the original plan in

comparison to plans that handled mild failures well.

Section 5.1 describes the details of the experimental infrastructure. The sections

that follow describe and analyze results from the experiments. All graphs containing

averages also include 95% confidence intervals. In many cases, the confidence intervals

are so small as to be invisible, but they are present in all graphs nevertheless. All

graphs containing data comparing a LocalSub algorithm with its Baseline have

Baseline to the right in the darker-shaded bar.

5.1 Experiment Design

In each experiment, LocalSub is run in order to improve a failed (and subsequently

repaired) plan. All plans are situated in the Repair Robot domain (described in

Section 2.5). In this domain, a robot travels around a factory repairing broken manu-

facturing equipment. The cost of a plan is the total amount of lost productivity that

occurs before the robot has fixed the last broken machine. Good plans minimize the

lost production, and hence have low values for cost. The cost is the means by which

I have quantitatively analyzed the performance of the planning algorithms. In the

experiments, planning is assumed to be instantaneous; the time spent planning does

5.1. Experiment Design 107

not affect the cost computed for that experiment. The comparison is still sound, as

both planning algorithms run for the same period of time.

Each experiment is given the following:

• Initial plan

• Initial world state in which the initial plan will be applied

• Total subplan levels

• Maximum subplan level to actually use

• A failure script

A failure script contains a list of failures that will occur as the plan is executed.

Each failure has two components. The first component indicates when the failure

occurs and the second component indicates what changes to the world state result

from the occurrence of the failure. The timing of the failure is specified in terms of

the occurrence of a particular operator. For example, a failure can happen before

the second time an activate-machine operator gets applied. The changes to the

world state are given in terms of add and delete lists. The predicates added and

deleted are specified in terms of parameters shared with the operator used to specify

failure timing. In these experiments, failures consisted of the destruction of parts

in a machine immediately before the robot attempts to use the activate-machine

operator to restart production.

A group of initial plans was created prior to running any of the experiments. The

same initial plan could be used with different failure scripts in different experiments.

Each individual experiment proceeded as follows:

1. Set the current plan to be the initial plan, the current world state to be the

initial world state, the total cost to 0, and the current failure number to be 0.

5.1. Experiment Design 108

2. Apply each operator of the current plan, updating the current world state and

accumulating cost values, until a failure is indicated in the failure script or all

operators have been applied. Go to step 7 upon the application of the final

operator.

3. Increment the failure number by 1.

4. Apply the failure from the failure script to the current world state.

5. Call Local-replan (described in Section 4.5). The result is the new current

plan. Record the number of nodes expanded in an array, nodes-searched,

indexed by the failure number.

6. Go back to step 2.

7. Repeat steps 1 through 6 using Find-plan (described in Section 4.2) instead of

Local-replan in step 5. Set the node limit for Find-plan to be the element of

nodes-searched indexed by failure-number.

Variations in map layout and machine part configuration were included in order

to formulate a large enough number of distinct problem instances in combination

with the other experimental variations so as to have statistically significant results.

A range of values for the subplan level was included in order to address research

question 1, variations in the number and severity of failures were included in order

to investigate research question 4, and variations in the sizes of the initial plans were

included in order to investigate research question 3.

Here are the details of these experimental variations:

• As discussed earlier, every experiment was run with one local subplan replace-

ment algorithm and one baseline algorithm. The first pair is LocalSub-1 with

Baseline-1; the second pair is LocalSub-2 with Baseline-2.

5.1. Experiment Design 109

• Three different maps were used. Each map represents a different layout of

machines in the factory. All maps have ten machines and three storehouses.

• Machines could have three or six parts each. In all experiments, each machine

had the same number of parts. With three parts, each machine had two parts

of one type and one part of a second type. With six parts, machines had various

combinations of one, two or three part types.

• Each combination of map and machine parts (6 total combinations) has two

initial plans: one plan that responds to a situation in which seven out of the

ten machines break, and a second plan that responds to a situation in which all

ten machines break. In addition, more parts per machine break in the scenario

in which all ten machines break. This variation was included so as to have

experiments in which relatively short and long initial plans were modified.

• Each first initial plan was subjected to three distinct failure sequences; each

second initial plan was subjected to four.

• For each map, 17 different specific failure patterns were given for each failure

sequence. Seven of the patterns applied to machines with three parts each; the

other ten patterns applied to machines with six parts each. For each sequence,

there were six patterns in which one part failed per machine, six patterns with

two parts failing, four patterns with three parts failing, and one pattern with

six parts failing.

• In all experiments, the robot has a carrying capacity of three spare parts.

• For all experiments, the total number of subplan levels is six. Each experiment

was run with each possible maximum subplan level from one to six.

5.1. Experiment Design 110

In summary, there are two planning algorithms, seven failure sequences, three

maps, 17 failure patterns, and six subplan levels, totaling 4284 experiments. More

details about machine configurations, initial states, and failure scripts are given in

Appendix B.

5.1.1 Planning Algorithm Parameters

The planning algorithms were configured as follows. Each call to Find-plan made by

Repair-plan was allowed one depth-first search. The depth limit for these searches

was 200 for the experiments where each machine had three part slots, and 380 for the

experiments where each machine had six part slots.2

The initial plans were generated by calling Baseline-2 with 100,000 depth-first

searches. The initial plans generated averaged 51 operators for the plans to repair

seven machines and 83 operators for the plans to repair 10 machines.

Calls to Find-plan from LocalSub were allowed 1000 depth-first searches given a

depth maximum of 20. Given other depth limits, the allowable number of depth-first

searches was varied proportionately. With a depth maximum of 10, 500 depth-first

searches were allowed; with a depth maximum of 40, 2000 depth-first searches were

allowed.

2The depth limits were determined by observing that a simple Repair Robot plan requires six

operators per part and two operators per machine. For each part, the robot might have to (1) travel

to a storehouse, (2) unload a part currently held, (3) travel to another storehouse, (4) grab a part,

(5) travel to a machine, and then (6) install the part. For each machine, the robot has to (1) travel

to the machine and (2) activate it

5.2. Overall Results 111

5.2 Overall Results

An overall comparison of LocalSub-1, Baseline-1, LocalSub-2, and Baseline-2

is given in Figure 5.1. Using LocalSub-2 results in a statistically significant lower

average cost than using LocalSub-1. Both LocalSub-1 and LocalSub-2 compare

favorably against Baseline-1. LocalSub-2 is very slightly better in performance

compared against Baseline-2.

The fact that Baseline-2 performs better than Baseline-1 was not unexpected,

but I did not have an intuition as to the degree of difference in cost until viewing the

results of these experiments. The modifications to Baseline-2 described in Section

4.2.3 were designed to prevent Find-plan from spending too much time searching a

narrow part of the space. I hypothesized that forcing a broader search of the space

would improve the resulting plan, and these experiments verify that hypothesis.

The fact that the differences between LocalSub-1 and LocalSub-2 were relatively

small was also not surprising, as only a relatively small part of each plan was generated

by the underlying algorithm. We will see in Section 5.2.1 that when examined in

terms of the individual subplan levels, LocalSub-2 provides a much more significant

advantage at the higher subplan levels in which larger subplans get replaced.

5.2.1 Subplan Levels

As described in Chapter 4, the higher the available subplan level, the larger the space

that is searched. I hypothesized that the increase in search space would imply a cor-

responding increase in solution quality. It is not necessarily the case that performing

more search will lead to a higher quality plan. Any incomplete search heuristic will

fail to examine part of the search space. As both LocalSub and Baseline are incom-

plete search heuristics, the degree of improvement achieved by additional search had

5.2. Overall Results 112

Figure 5.1: Global Replanning Variations vs. Local Subplan Replacement Variations

(2142 runs/algorithm)

5.2. Overall Results 113

to be measured empirically.

In order to test this hypothesis, I ran experiments in which local subplan replace-

ment was given 1, 2, 3, 4, 5, and 6 levels, with the maximum level set at 6 in all

cases. In each experiment, L
6

of the plan operators were replaced at each replacement

location for each subplan level L. Each Baseline was run with a node limit equal to

the number of nodes expanded by LocalSub at that level.

Figure 5.2 aggregates the average costs of LocalSub-1 and LocalSub-2 given in

Figure 5.1 and then decomposes these aggregated costs according to subplan levels.

The same aggregation and decomposition is done with regard to Baseline-1 and

Baseline-2. Figures 5.3 and 5.4 decompose the datasets given in Figure 5.2 by

algorithms 1 and 2, respectively.

The data given in Figure 5.2 verifies the hypothesis that LocalSub produces higher

quality plans when using higher subplan levels. However, the average performance of

Baseline tends not to vary much with the subplan level. The same relative results

for Baseline-1 and Baseline-2 can also be seen in Figures 5.3 and 5.4.

Because of the restrictions placed on the number of nodes Baseline-1 can expand,

it never expands most of its top-level child nodes. Hence, it considers only one or

a few possibilities for its first choice of goal to solve. Due to the nature of the cost

function, a poor choice for the first goal to achieve can result in a plan that involves

a lot of travel before the first machine gets repaired. This travel can result in a large

amount of lost production. Instead, Baseline-1 spends most of its search effort

exploring nodes at high depths, effectively considering plans that differ primarily in

the last few operators.

Baseline-2 is designed to expand all of its top-level child nodes by subdividing its

search space into separate groups of depth-first search (as described in Section 4.2.3).

Each group begins its search with a different top-level node, thus avoiding the problem

5.3. Analysis Metrics 114

mentioned above regarding Baseline-1. Still, within each group the search performed

behaves similarly to Baseline-1, spending most of its effort exploring nodes at high

depths.

In addition to seeing the average decrease in plan cost corresponding to each in-

crease in subplan level, it is also useful to know how often the application of a subplan

level actually results in finding a replacement plan of lower cost. The frequency of

change was measured by counting, for each subplan level for each plan repair, whether

an improvement occurred as a result of a subplan replacement at any anchor. This

count was divided by the total number of plan repairs. In Figures 5.5, 5.6, and 5.7, we

can see that the measured frequency of change decreases with an increase in subplan

level. This decrease is most strongly marked in Figure 5.6, which is consistent with

the fact that Figure 5.3 shows that LocalSub-1 does not improve much at all after the

first three levels. The more moderate decrease shown for LocalSub-2 in Figure 5.7

is consistent with the more consistent improvements in cost seen in Figure 5.4.

5.3 Analysis Metrics

5.3.1 Utilization of Original Search

In order to understand the extent to which LocalSub benefits from the decisions made

in the search for the preexisting plan, I measured the percentage of operators from

the preexisting plan that could be found in various plans returned by the LocalSub. I

used this same metric to determine the resemblance between the plans discovered by

each Baseline and the original plan. While the baselines do not use the original plan

to guide their search, they could produce operator sequences that resemble sections

of the original plan. Measuring this duplication provides a baseline of assessing the

5.3. Analysis Metrics 115

Figure 5.2: Plan Cost vs. Subplan Level (714 runs/level)

5.3. Analysis Metrics 116

Figure 5.3: Plan Cost vs. Subplan Level: LocalSub-1 and Baseline-1 (357 runs/level)

5.3. Analysis Metrics 117

Figure 5.4: Plan Cost vs. Subplan Level: LocalSub-2 and Baseline-2 (357 runs/level)

5.3. Analysis Metrics 118

Figure 5.5: Plan Change Percentage vs. Subplan Level: LocalSub-1 and Baseline-1

(357 runs/level)

5.3. Analysis Metrics 119

Figure 5.6: Plan Change Percentage vs. Subplan Level: LocalSub-1 and Baseline-1

(357 runs/level)

5.3. Analysis Metrics 120

Figure 5.7: Plan Change Percentage vs. Subplan Level: LocalSub-2 and Baseline-2

(357 runs/level)

5.3. Analysis Metrics 121

significance of utilization in the corresponding LocalSub experiments. In addition,

comparing the utilization of Baseline-1 and Baseline-2 can indicate different kinds

of underlying dynamics between these two algorithms.

Figure 5.8 contains the percentages for LocalSub-1 and Baseline-1 averaged over

all experiments. Figure 5.9 contains the percentages for LocalSub-2 and Baseline-2.

The LocalSub planners have a consistently higher percentage of original plan oper-

ators than the Baseline planners. This demonstrates that the search conducted by

LocalSub is being guided by decisions made in the search for the original plan.

Comparing Figure 5.8 with Figure 5.3, we can see that the 50% utilization rate of

Baseline-1 consistently produces plans of relatively high cost. The utilization levels

of 80% and above for LocalSub-1 suggest that the low cost of LocalSub-1 relative

to Baseline-1 can be credited to those operators.

Comparing Figure 5.9 with Figure 5.4, we can see that at levels 1 and 2, uti-

lization rates above 75% result in plans with higher cost than their corresponding

baselines, which have utilization rates around 65%. This suggests that it is beneficial

for LocalSub to eliminate some of the operators from the original plan. At levels 3,

4, 5, and 6, this is exactly what happens. At those levels, the cost of LocalSub-2

drops below that of Baseline-2. The utilization rate of LocalSub-2 also declines,

although it converges around 70%, still higher than the peak utilization rate for

Baseline-2. This suggests that LocalSub-2 has discovered a useful subset of the

operators from the original plan for the purpose of the new plan, and that this is a

capability Baseline-2 does not demonstrate.

5.3.2 Repair Penalty

The repair penalty can serve as an abstract guide for determining the performance of

LocalSub-2 given different situations. In particular, it will be used for comparing the

5.3. Analysis Metrics 122

Figure 5.8: Original Plan Operator Utilization vs. Subplan Level: LocalSub-1 and

Baseline-1 (357 runs/level)

5.3. Analysis Metrics 123

Figure 5.9: Original Plan Operator Utilization vs. Subplan Level: LocalSub-2 and

Baseline-2 (357 runs/level)

5.4. Failure Severity 124

results for failure severity (Section 5.4) and plan length (Section 5.5). It represents

a greedy distance measure in plan space from the original failed plan to a repaired

valid plan.

The repair penalty is calculated as follows. Assume the original plan would have

cost c if no failure had occurred. Cost c can be partitioned into d, the cost prior to

the failure point, and t, the cost after (still assuming that the failure did not occur).

Note that t = c − d. Once the failure occurs, an initial repaired plan is generated.

This plan has cost r. Inserting extra operators results in the net addition of r − t to

the total cost, compared with the failure not having occurred. The repair penalty is

the percentage of the cost of the repaired plan that results from these extra operators;

in other words, 100× r−t
r

.

5.4 Failure Severity

Failure severity was measured based upon the number of parts that failed in a single

machine. Failures of 1, 2, 3, and 6 parts were considered. Increasing the number of

part failures resulted in both LocalSub and Baseline producing higher overall cost

plans. In Figure 5.10, we can see that the overall aggregated results for LocalSub

were superior to the aggregated results for Baseline.

However, the superior performance of LocalSub depends heavily upon the base-

line of comparison and the underlying planning algorithm. Figure 5.11 shows the

results for LocalSub-1 vs. Baseline-1. LocalSub-1 does very well in comparison.

In contrast, in the case of LocalSub-2, Figure 5.12 shows that in the cases of 3 and

6 part failures, Baseline-2 does better.

Because of the ambiguous advantages of Baseline-2, I further analyzed that data

in terms of the subplan levels as well as the number of part failures. The data for

5.4. Failure Severity 125

Figure 5.10: Plan Cost vs. Number of Failed Parts (1 or 2 parts: 1512 runs; 3 parts:

1008 runs; 6 parts: 252 runs)

5.4. Failure Severity 126

Figure 5.11: Plan Cost vs. Number of Failed Parts, LocalSub-1 and Baseline-1 (1 or

2 parts: 756 runs; 3 parts: 504 runs; 6 parts: 126 runs)

5.4. Failure Severity 127

Figure 5.12: Plan Cost vs. Number of Failed Parts, LocalSub-2 and Baseline-2 (1 or

2 parts: 756 runs; 3 parts: 504 runs; 6 parts: 126 runs)

5.4. Failure Severity 128

1-part failures is given in Figure 5.13, for 2-part failures in Figure 5.14, and for 3-part

failures in Figure 5.15.

LocalSub-2 performs worse than Baseline-2 at the first subplan level in all cases,

even the otherwise favorable 1-part failure data. LocalSub-2 is at least statistically

tied with Baseline-2 by the 4th subplan level in all three cases.

In order to further analyze the behavior of LocalSub-2 across these different sever-

ities of failure, we will now examine the impact of failure severity on how LocalSub-2

utilizes operators from the original plan. With 1 part failure, LocalSub-2 performs

better than Baseline-2 starting at subplan level 2. In Figure 5.16, we see that

at subplan level 2, the utilization is around 80% for LocalSub-2. Those operators

from the original plan have helped guide LocalSub-2 to a better plan than could be

achieved by Baseline-2 with the same amount of search.

With 2 part failures, LocalSub-2 does not perform better than Baseline-2 until

subplan level 3. At that point, the utilization for LocalSub-2 is around 75%; about

5% lower than for the 1 part failure scenario (see Figure 5.17). With 3 part failures,

LocalSub-2 does not perform better than Baseline-2 until subplan level 5, where

according to Figure 5.18 utilization is approximately 70%.

These examples demonstrate that depending upon failure severity, there are dif-

ferent levels of helpful utilization of operators from the original plan. Retaining too

many operators can have negative consequences. However, retaining the right pro-

portion of operators enables LocalSub-2 to find better plans than Baseline-2 given

the same amount of search.

Figure 5.19 shows the average repair penalty for each level of failure severity,

averaged across all experiments. The repair penalty closely tracks severity. This

shows a relationship between the average repair penalty and the increased difficulty

of finding a low-cost plan relative to Baseline-2.

5.4. Failure Severity 129

Figure 5.13: Plan Cost vs. Subplan Level: LocalSub-2 and Baseline-2, 1 Part Failure

(126 runs/level)

5.4. Failure Severity 130

Figure 5.14: Plan Cost vs. Subplan Level: LocalSub-2 and Baseline-2, 2 Part Failure

(126 runs/level)

5.4. Failure Severity 131

Figure 5.15: Plan Cost vs. Subplan Level: LocalSub-2 and Baseline-2, 3 Part Failure

(84 runs/level)

5.4. Failure Severity 132

Figure 5.16: Original Plan Operator Utilization vs. Subplan Level: LocalSub-2 and

Baseline-2, 1 Part Failure (357 runs/level)

5.4. Failure Severity 133

Figure 5.17: Original Plan Operator Utilization vs. Subplan Level: LocalSub-2 and

Baseline-2, 2 Part Failure (357 runs/level)

5.4. Failure Severity 134

Figure 5.18: Original Plan Operator Utilization vs. Subplan Level: LocalSub-2 and

Baseline-2, 3 Part Failure (357 runs/level)

5.5. Initial Plan Length and Failure Spacing 135

One part failure problems average 29% for repair penalty, and from Figure 5.13,

we see that with one part failure, LocalSub-2 drops below Baseline-2 at subplan

level 2. Two part failure problems average 34% for repair penalty, with LocalSub-2

dropping below Baseline-2 at subplan level 3 (Figure 5.14). Three part failures

average a repair penalty of 41%, with the drop at subplan level 5 (Figure 5.15).

5.5 Initial Plan Length and Failure Spacing

I ran experiments using seven different failure spacings. In the failure scripts for each

experiment, each failure was specified as the nth instance of the activate-machine

operator since the previous failure. For example, a failure spacing of 1-2-2 indicates

that a failure will occur at the first attempt to activate a machine, another failure

after the second attempt following replanning, and a final failure after the second

attempt following the second replanning episode. In each failure, only the machine

the robot attempts to activate fails. The number of parts that fail in that machine

vary as described in Section 5.4.

In all maps, ten total machines are present. The spacings 1-2-2, 1-3-3, and 1-4-1

were used with initial plans that fix seven machines. The spacings 1-2-2-2-2, 1-5-3,

1-4-4, and 1-6 were used with initial plans that fix all ten machines. These spacings

were selected in order to investigate the effect of permitting the repaired and improved

plans to run for varying amounts of time before experiencing new failures.

The results presented in this section focus on local subplan replacement using

LocalSub-2 compared to Baseline-2. This focus was selected because local subplan

replacement completely dominates Baseline-1 in all cases, whereas in comparison

with Baseline-2 things are more interesting.

Figure 5.20 shows, for each subplan level, the average cost of the overall runs that

5.5. Initial Plan Length and Failure Spacing 136

Figure 5.19: Repair Penalty vs. Failure Severity

5.5. Initial Plan Length and Failure Spacing 137

use an initial plan that repairs seven machines. It was not until subplan level 6 that

LocalSub-2 performed better than Baseline-2. Figure 5.21 shows the runs using an

initial plan that repairs ten machines and indicates that LocalSub-2 performs better

starting at subplan level 3.

On average, the plans generated by LocalSub-2 using a larger initial plan per-

formed significantly better in comparison to Baseline-2 than those using a smaller

initial plan. Figure 5.22 shows the average repair penalty for each initial plan length

category. Short plans have much higher average repair penalties than long plans.

In Figure 5.20, we see that with the shorter initial plans, the average level at

which the drop occurs is level 6, in contrast to the long initial plans, where Figure 5.21

indicates the drop occurring at level 2. The average repair penalties are 32% and 43%

respectively. These values fall in line with the values given above in Section 5.4 for

failure severity, demonstrating the utility of the repair penalty as a metric for domain

difficulty for LocalSub-2.

The plans created using longer initial plans have a more consistent advantage over

their baselines than those created using shorter initial plans. The shorter initial plans

are on average statistically tied with their baselines until the operators at the end

of each plan are reached. As it happens, the opening is never reached; the average

operator failure happens at operator 20, well before the split after operator 30. The

application of only the first group of operators from the new plan also helps to explain

why in Figures 5.27, 5.28, and 5.29, overall performance is very similar.

Figure 5.23 shows the average cost by operator for the plans generated in response

to the first failure for all runs with the shorter initial plans. Figure 5.24 shows the

same information for all the scenarios starting with the larger initial plan. These

costs were calculated by keeping track of the accumulated cost after applying each

operator in the course of each experiment.

5.5. Initial Plan Length and Failure Spacing 138

Figure 5.20: Plan Cost vs. Subplan Level: LocalSub-2 and Baseline-2, Initial Plan

Repairs 7 Machines (153 runs/level)

5.5. Initial Plan Length and Failure Spacing 139

Figure 5.21: Plan Cost vs. Subplan Level: LocalSub-2 and Baseline-2, Initial Plan

Repairs 10 Machines (204 runs/level)

5.5. Initial Plan Length and Failure Spacing 140

Figure 5.22: Repair Penalty vs. Initial Plan Length

5.5. Initial Plan Length and Failure Spacing 141

Figure 5.23: Smaller Initial Plan, by Operator

5.5. Initial Plan Length and Failure Spacing 142

Figure 5.24: Larger Initial Plan, by Operator

5.5. Initial Plan Length and Failure Spacing 143

Although Figure 5.23 shows how LocalSub-2 is at a disadvantage with a short ini-

tial plan (in comparison to a long initial plan), prior to the failure they are still statis-

tically tied in performance. In Figure 5.25, the decreasing performance of LocalSub-2

after each failure is demonstrated. Figure 5.26 shows how the repair penalty increases

after each failure.3 This occurs as the remaining plans become smaller, offering fur-

ther evidence of the relationship between the repair penalty and expected utility of

LocalSub-2.

Figure 5.31 shows spacing 1-4-4 and Figure 5.33 shows spacing 1-6. In comparing

these two spacings with 1-2-2-2-2 (Figure 5.30), we see that the presence of a larger

number of failures results in a higher overall cost. Because each failure occurs imme-

diately prior to activating a machine, scenarios with more failures will have longer

operator sequences between activations in comparison to scenarios with fewer failures.

These longer sequences add overhead to the cost of the plan in comparison to a plan

that experienced fewer failures.

The results for operator utilization given initial plan length are shown in Fig-

ure 5.34 for short initial plans and Figure 5.35 for long initial plans.

In Figure 5.20, we see that with the shorter initial plans, the average level at which

the drop occurs is level 6, in contrast to the long initial plans, where Figure 5.21

indicates the drop occurring at level 2. The operator utilization percentages at the

drop points are 73% and 78% respectively.

The utilization percentage for the long initial plans is comparable to that for the

failure severity levels with comparable repair penalties. However, the utilization for

the short initial plans is high compared to its counterpart in failure severity. As many

different plans of different costs can be associated with the same utilization value, this

is not necessarily surprising. Still, a general trend that an increased repair penalty

3The data contained in Figures 5.25 and 5.26 was averaged across all runs with short initial plans.

5.5. Initial Plan Length and Failure Spacing 144

Figure 5.25: Plan Cost vs. Failure: Short Initial Plan: LocalSub-2 and Baseline-2

5.5. Initial Plan Length and Failure Spacing 145

Figure 5.26: Repair Penalty vs. Failure: Short Initial Plan

5.5. Initial Plan Length and Failure Spacing 146

Figure 5.27: Plan Cost vs. Subplan Level: LocalSub-2 and Baseline-2, 1-2-2 (51

runs/level)

5.5. Initial Plan Length and Failure Spacing 147

Figure 5.28: Plan Cost vs. Subplan Level: LocalSub-2 and Baseline-2, 1-3-3 (51

runs/level)

5.5. Initial Plan Length and Failure Spacing 148

Figure 5.29: Plan Cost vs. Subplan Level: LocalSub-2 and Baseline-2, 1-4-1 (51

runs/level)

5.5. Initial Plan Length and Failure Spacing 149

Figure 5.30: Plan Cost vs. Subplan Level: LocalSub-2 and Baseline-2, 1-2-2-2-2 (51

runs/level)

5.5. Initial Plan Length and Failure Spacing 150

Figure 5.31: Plan Cost vs. Subplan Level: LocalSub-2 and Baseline-2, 1-4-4 (51

runs/level)

5.5. Initial Plan Length and Failure Spacing 151

Figure 5.32: Plan Cost vs. Subplan Level: LocalSub-2 and Baseline-2, 1-5-3 (51

runs/level)

5.5. Initial Plan Length and Failure Spacing 152

Figure 5.33: Plan Cost vs. Subplan Level: LocalSub-2 and Baseline-2, 1-6 (51

runs/level)

5.6. An Incomplete Baseline Run 153

implies a lower beneficial level of utilization does seem to hold.

5.6 An Incomplete Baseline Run

In a small number of the subplan level 1 runs, local subplan replacement used so few

search nodes that the baseline algorithm did not have enough nodes available to it to

enable it to find even a single plan. An example is given in Figure 5.36.

The plan in Figure 5.36 is the result of plan repair with no subplan replacements.

The cost of this plan is 630 and it has 11 operators. As there are six total subplan

levels, the subplan replacement size formula indicates that at level 1, 1
6

of the operators

are to be replaced at each replacement point. With 11 operators total, the system

rounds down by default, and the subplan size for replacement is just 1 operator.

Based on the size of the plan, the system dictates that 50 plans be attempted for

each replacement point. (The parameter configuration resulting in this is discussed

in Section 5.1.1.) There are two such points in the above plan, resulting in 100 depth

1 searches for replacement plans. 100 total nodes get expanded. Unsurprisingly, the

plan remains unchanged.

The baseline algorithm is then given 100 nodes for its search. In this case, the

modified Find-plan algorithm is being used. For this particular problem instance,

modified Find-plan partitions its search space into ten subspaces, each of which is

given a maximum of ten nodes for its search. Ten nodes being insufficient for finding

a plan, none of the subsearches find a plan.

This behavior was observed in seven out of 2142 total experiments that used the

modified Find-plan algorithm. It did not occur in any experiments using unmodified

Find-plan. The subdivision of the state space used in the modified Find-plan algo-

rithm was essential for this problem to occur in each instance. It only ever happens at

5.6. An Incomplete Baseline Run 154

Figure 5.34: Original Plan Operator Utilization vs. Subplan Level: LocalSub-2 and

Baseline-2, Initial Plan Repairs 7 Machines (153 runs/level)

5.6. An Incomplete Baseline Run 155

Figure 5.35: Original Plan Operator Utilization vs. Subplan Level: LocalSub-2 and

Baseline-2, Initial Plan Repairs 10 Machines (204 runs/level)

5.6. An Incomplete Baseline Run 156

1 (travel 1 11)

2 (get-part-from 11 1 0 2)

3 (get-part-from 11 1 1 3)

4 (travel 11 1)

5 (place-part-at 1 1 0 0)

6 (place-part-at 1 1 1 2)

7 (travel 1 12)

8 (get-part-from 12 2 0 7)

9 (travel 12 1)

10 (place-part-at 1 2 0 4)

11 (activate-machine 1)

Figure 5.36: Repaired Plan

5.7. Computational Resources 157

subplan level 1; at higher levels, given my test cases, there are always enough nodes

available to ensure that the baseline generates at least one plan.

5.7 Computational Resources

Figure 5.37 shows the average number of nodes expanded for each subplan level.

These numbers are cumulative; for example, the count for level 3 includes all the nodes

expanded at levels 1 and 2. The number of nodes expanded increases significantly

from each subplan level to the next level.

Determining the time required by the plan repair phase along with the average

number of nodes expanded per second given a particular implementation and com-

puting hardware can indicate the amount of wall-clock time needed by local subplan

replacement.

On a one gigahertz Pentium III with one gigabyte of RAM, the repair phase

takes an average of 1.31 seconds with a 95% confidence interval of 0.03 seconds.

On the same machine, an average of 453 nodes were expanded per second, with a

95% confidence interval of 9 nodes per second. Based on the data from Figure 5.37,

with my implementation on those machines, a replanning episode at level 1 took

approximately one minute, at level 2 three minutes, at level 3 six and a half minutes,

at level 4 ten and a half minutes, at level 5 15 minutes, and at level 6 an episode took

about 22 minutes.

5.8 Discussion

My research has sought to investigate the idea of local subplan replacement as a

means of taking advantage of the search effort previously expended to generate the

5.8. Discussion 158

Figure 5.37: Nodes Expanded vs. Subplan Level (716 runs/level)

5.8. Discussion 159

preexisting plan it is repairing. Research question 1 sought to investigate the overall

performance of local subplan replacement in comparison to global replanning. In

comparison to Baseline-1, LocalSub-1 performed exceptionally well; compared to

Baseline-2, performance of LocalSub-2 was just slightly better on average.

Baseline-1 fared poorly, as it focused too much of its search energy on a relatively

narrow part of the search space. The broader exploration of Baseline-2 was demon-

strated to be helpful. As the amount of search space available increased, the perfor-

mance of neither baseline improved much. LocalSub-1 and LocalSub-2 both demon-

strated significant improvement given additional search, especially LocalSub-2.

An important aspect of this research is demonstrating the influence of the original

plan on the search for a new plan (research question 2). I measured this influence

based on the percentage of operators in each new plan that could be found in the

original plan. I used this same metric to determine the resemblance between the plans

discovered by each baseline and the original plan. Local subplan replacement has a

consistently higher correspondence to the original plan, indicating that the original

plan does indeed have a strong influence on the result of the search. My results also

show that baselines that perform well have at least a 60% correspondence with the

original plan.

Focusing on the severity of individual failures (in response to part of research

question 4), more severe failures were problematic for LocalSub-2 in comparison

with Baseline-2. More severe failures are often handled best by plans that make

less use of the original plan. Consequently, a great deal of search was required in

some cases for LocalSub-2 to find a plan with a cost competitive with Baseline-2.

Regarding research question 3, the length of the initial plan was a significant con-

tributor to the success or failure of LocalSub-2. In particular, when the initial plan

was relatively long, the plans generated by LocalSub-2 were consistently superior to

5.8. Discussion 160

those of Baseline-2 measured on an operator-by-operator basis. With short initial

plans, any advantage held by LocalSub-2 was not manifest until towards the end of

the plan. In my experiments, those operators never got applied because subsequent

failures would interrupt the plan prior to reaching that point.

The performance of LocalSub-2 across different initial plan lengths and severity

levels was summarized using the repair penalty. The repair penalty provides a greedy

measure of the distance between the original failed plan and a repaired valid plan. A

high penalty implies a larger greedy distance in plan space, and consequently greater

difficulty for local subplan replacement to find a good plan.

6

Conclusions and Future Work

6.1 Conclusions

The purpose of this research was to determine whether local subplan replacement

provides an effective means for organizing an anytime algorithm for planning in the

context of repairing a preexisting plan that has encountered a failure. Of particu-

lar interest was evaluating the extent to which utilizing aspects of the search that

generated the preexisting plan was helpful in organizing an anytime search for a plan.

The contributions of this research are as follows:

• Local subplan replacement is the first plan repair algorithm to guarantee the

availability of a valid plan at all times. This valid plan is available on average

within two seconds in my experiments. This contribution is achieved in that

context by restricting the problem space to those for which a valid plan could

be found in polynomial time. No previous work in plan repair has studied how

that restriction could be effectively exploited.

• My results demonstrate empirically that local subplan replacement generates

plans that do a better job of maximizing factory production than those gener-

161

6.1. Conclusions 162

ated by a global replanning algorithm under certain conditions.

• Limitations of local subplan replacement are demonstrated empirically. High

values for the repair penalty, a greedy measure of the distance in plan space be-

tween the original failed plan and a valid repaired plan, are shown to correspond

with local subplan replacement requiring large amounts of search to generate a

plan of lower cost than the corresponding baseline. With a repair penalty of no

more than 34%, local subplan replacement produced plans of lower cost than

the baseline when subplans of at least one-third the overall plan size could be

replaced. With higher values for the repair penalty, nearly all of the original

plan needs to be replaced in order to generate a plan with lower cost than the

baseline.

• The effect of using the original plan to guide the search is quantified and mea-

sured empirically. The plans generated by local subplan replacement contain

significantly more operators from the original plan than those generated by the

baseline on average. In many cases, especially when the repair penalty is rela-

tively low, this utilization corresponds to a lower plan cost than the baseline,

empirically demonstrating the benefit of utilizing material from the original plan

in such situations.

Secondary contributions of this research include:

• A new anytime planning algorithm employing depth-first search is described. It

utilizes the assumption that a valid plan can be found with a single depth-first

search in order to implement its anytime progression. Unlike existing systems, it

will always have available a valid plan, and it takes responsibility for generating

the first plan in its anytime progression.

6.2. Future Work 163

• An analytical demonstration of the relationship between different categories of

planning problems for which valid plans can be found in polynomial time is

given. I identify a particular type of delete effect that implements resource

consumption as a major contributor to the intractability of finding plans in

polynomial time.

6.2 Future Work

6.2.1 New Domains

Obtaining experimental results for domains beyond the Repair Robot domain would

be of interest, with a particular focus on domains with different types of cost func-

tions. Verifying the utility of the repair penalty with different cost functions could

demonstrate its general applicability as a measure of the difficulty a particular prob-

lem instance will present to local subplan replacement.

Exploring other domains could test whether certain domain assumptions from

the Repair Robot problem are significant. In particular, evaluating a multi-robot

variation of the Repair Robot problem, in which there are more machines to be re-

paired than robots available, would be able to demonstrate whether the assumption

of only one robot had any impact. Evaluating a package delivery problem (see Sec-

tion 2.3.7.1) could provide a similar comparison while evaluating a different type of

failure, namely, vehicles becoming disabled and unable to deliver packages.

6.2.2 Determining Time Allocation

Another important aspect of investigating local subplan replacement involves inte-

grating it into an anytime planning system that allocates it time for computation

6.2. Future Work 164

based on system needs. Local subplan replacement could be used in conjunction with

the deliberation scheduler of Dean et al. [12] or the related system of Zilberstein and

Russell [64]. Both systems require a performance profile for each anytime algorithm

they incorporate. The experimental results given in Chapter 5 are examples of the

kinds of performance profiles that can be generated for local subplan replacement.

It would again be very important to calibrate the available subplan levels to the

timing requirements and capabilities of the target system. In particular, the delib-

eration scheduler could take into account the initial plan size and failure frequency

in determining the amount of system resources it ought to dedicate to local subplan

replacement. A properly configured deliberation scheduler could utilize local subplan

replacement primarily when it is most likely to be useful.

6.2.3 Reorganizing Subplan Replacement

The issue of failure severity discussed in Section 5.4 demonstrated that in many

situations, local subplan replacement stays too close to the original plan. Still, even

in those situations, the utilization rate for a good plan was still above 60%. A method

to enable larger jumps in the search space at low subplan levels might be able to help

in finding these good plans earlier in the anytime progression. An example of such a

method could be to perform multiple searches utilizing different components of the

original plan.

A variation on this idea would be to divide the original plan into subplans that are

all small enough to be executed before the next expected failure. Plan repair could

be applied to each of these subplans in turn to produce a valid plan.

This idea could be very helpful in the Repair Robot domain, in which a plan con-

sists of distinct tasks that can be performed in any order. For a domain with stronger

ordering constraints, such as the Blocks World, this idea might be less effective, al-

6.2. Future Work 165

though in a Blocks World domain with a large number of small towers to be built it

could still be helpful to try.

Along these same lines, further research could address the meta-level control prob-

lem for anytime algorithms. One particular focus could be for a control algorithm

to use machine learning techniques to predict the timing of the next failure. This

would be the source of the input to a modified local subplan replacement algorithm

as described above.

6.2.4 Tractable Algorithms for Valid Planning

As I mentioned above, the restriction of local subplan replacement to domains for

which valid plans can be found in polynomial time is a significant limitation. Further

research on refining the categories of planning problems for which this is the case

would be most helpful in broadening the applicability of local subplan replacement.

In particular, the observation that it is easy to classify a planning problem in such

a way as to make it seem a more difficult problem than it really is would seem to

indicate that such category refinement is a distinct possibility. (An example of such

an easily misclassified problem is the famous Blocks World problem; see Section 2.3.2

for more details about this.)

Although planning theory has shown that delete effects in plan operators are

extremely harmful to the prospects of finding valid plans quickly, the practical utility

the Find-plan algorithm described in Section 4.2 and systems that use hierarchical

task networks indicates that delete effects do not intrinsically interfere with finding

valid plans tractably across domains. The current state-of-the-art is to customize the

search depending on very specific domain characteristics.

My belief is that delete effects are much more powerful constructs than most

domain implementors actually need for encoding their domains. Determining what

6.2. Future Work 166

delete effects are actually used for, and designing algorithms with these issues in mind,

could eventually lead to improved planning algorithms that are reasonably general

(albeit less general than full STRIPS planning) but require less configuration than

algorithms like Find-plan from Section 4.2 and hierarchical task networks.

Here are three common uses for delete effects in planning domains:

• Moving objects around

• Resource depletion

• Disassembly of assembled objects

Moving objects around is the centerpiece of logistics problems such as the Repair

Robot problem and other related problems, many of which have been demonstrated

to be tractable to solve for finding valid plans. Resource depletion can be handled if

there is a reliable means of ensuring replenishment occurs. It is possible that object

disassembly could also be handled efficiently in ways similar to moving objects around,

but that is speculation on my part at this time.

Part of the intuition here is that the precondition, add effect, delete effect specifi-

cation and states as predicates is analogous to the use of assembly language. What is

needed is a higher level planning language where common tasks are easy. In my own

experience, I have often written miniature compilers to generate states as encoded

as predicates based on higher level specifications. Determining how generally useful

such specifications could be, and what kinds of good algorithms could be used with

them is a promising subject for further investigation.

6.2. Future Work 167

6.2.5 Modified Depth-first Search

The modified DFS algorithm described in Section 4.2 was devised in order to have

available a competitive benchmark global replanning anytime algorithm for evaluating

local subplan replacement. In some situations, it performed very well, much better

than traditional DFS. The goal was to achieve some kind of “statistical sampling” of

the state space explored by DFS.

There already exist search algorithms that attempt to do similar things. Simulated

annealing is one popular example. Simulated annealing is a variation of hill climbing

in which disadvantageous moves are made in the search space with a probability that

diminishes as the algorithm progresses. Comparing the ability of modified DFS and

simulated annealing to explore different search spaces could give some useful results

about what kinds of algorithms are most effective in practice at sampling the solutions

in a search space.

A

Rules for the Repair Robot Domain

((machine-works ?machine)

(priority-over (machine-slot-full ?a ?b) (machine-slot-empty ?a ?b))

(or (check (machine-works ?machine))

(and (forall (?mach-slot)

(is-machine-part-slot ?machine ?mach-slot)

(machine-slot-full ?machine ?mach-slot))

(robot-at ?machine)

(achieve activate-machine ?machine))))

Figure A.1: Rule for machine-works

168

169

((robot-at ?machine)

(priority-over)

(or (check (robot-at ?machine))

(exists (?robot-l) (robot-at ?robot-l)

(achieve travel ?robot-l ?machine))))

Figure A.2: Rule for robot-at

((machine-slot-full ?machine ?slot)

(priority-over (robot-slot-full ?a ?b) (robot-slot-empty ?a))

(or (check (machine-slot-full ?machine ?slot))

(or (and (check (is-storehouse ?machine))

(get-part-for ?machine ?slot)

(install-one-part ?machine ?slot))

(and (check (not (is-storehouse ?machine)))

(get-part-for ?machine ?slot)

(get-extra-parts-for ?machine ?slot)

(get-other-machine-parts ?machine)

(install-all-parts ?machine)))))

Figure A.3: Rule for machine-slot-full

170

((machine-slot-empty ?machine ?slot)

(priority-over (robot-slot-full ?a ?b) (robot-slot-empty ?a))

(or (check (machine-slot-empty ?machine ?slot))

(exists (?type) (machine-part-slot-type ?machine ?slot ?type)

(choose (exists (?robot-slot)

(is-robot-part-slot ?robot-slot)

(try-first (robot-slot-empty ?robot-slot))

(and (robot-slot-empty ?robot-slot)

(robot-at ?machine)

(achieve get-part-from ?machine ?type

?robot-slot ?slot)))))))

Figure A.4: Rule for machine-slot-empty

171

((robot-slot-full ?slot ?type)

(priority-over (robot-at ?a))

(or (check (robot-slot-full ?slot ?type))

(choose (exists (?store) (is-storehouse ?store)

(try-first (robot-at ?store))

(exists (?store-slot)

(machine-part-slot-type ?store ?store-slot ?type)

(and (check (machine-slot-full ?store ?store-slot))

(robot-at ?store)

(achieve get-part-from ?store ?type ?slot

?store-slot)))))))

Figure A.5: Rule for robot-slot-full

172

((robot-slot-empty ?slot)

(priority-over (robot-at ?a))

(or (check (robot-slot-empty ?slot))

(exists (?type) (robot-slot-full ?slot ?type)

(or (choose (exists (?machine) (not-machine-works ?machine)

(and (check (not (is-storehouse ?machine)))

(choose (exists (?mach-slot)

(machine-part-slot-type ?machine ?mach-slot

?type)

(and (check

(and (machine-slot-empty ?machine

?mach-slot)

(goal (machine-slot-full ?machine

?mach-slot))))

(robot-at ?machine)

(achieve place-part-at ?machine ?type

?slot ?mach-slot)))))))

(choose (exists (?store) (is-storehouse ?store)

(exists (?store-slot)

(machine-part-slot-type ?store ?store-slot ?type)

(and (check (machine-slot-empty ?store ?store-slot))

(robot-at ?store)

(achieve place-part-at ?store ?type ?slot

?store-slot)))))))))

Figure A.6: Rule for robot-slot-empty

173

((not-machine-works ?machine)

(priority-over)

(check (not-machine-works ?machine)))

Figure A.7: Rule for not-machine-works

((can-activate-machine ?machine)

(priority-over (robot-slot-full ?a ?b) (robot-slot-empty ?a))

(forall (?mach-slot) (is-machine-part-slot ?machine ?mach-slot)

(machine-slot-full ?machine ?mach-slot)))

Figure A.8: Rule for can-activate-machine

174

((get-part-for ?machine ?slot)

(priority-over)

(or (tag-added-for ?machine ?slot)

(choose

(exists (?robot-slot) (is-robot-part-slot ?robot-slot)

(try-first (robot-slot-empty ?robot-slot))

(and (robot-slot-empty ?robot-slot)

(choose (exists (?store) (is-storehouse ?store)

(part-for-slot-gotten ?machine ?slot

?store ?robot-slot))))))))

Figure A.9: Rule for get-part-for

175

((get-extra-parts-for ?machine ?slot)

(priority-over)

(or (check (is-storehouse ?machine))

(forall (?other-slot) (machine-slot-empty ?machine ?other-slot)

(or (check (= ?other-slot ?slot))

(check (exists (?robot-slot)

(robot-part-tagged ?robot-slot ?machine

?other-slot)))

(check (goal (machine-slot-empty ?machine ?other-slot)))

(tag-added-for ?machine ?other-slot)

(exists (?robot-slot) (robot-slot-empty ?robot-slot)

(exists (?store) (robot-at ?store)

(and (check (is-storehouse ?store))

(part-for-slot-gotten ?machine ?other-slot

?store ?robot-slot))))

(default)))))

Figure A.10: Rule for get-extra-parts-for

176

((get-other-machine-parts ?machine)

(priority-over)

(forall (?other-mach) (not-machine-works ?other-mach)

(or (check (= ?other-mach ?machine))

(forall (?other-slot)

(machine-slot-empty ?other-mach ?other-slot)

(or (check

(goal (machine-slot-empty ?other-mach ?other-slot)))

(check (and (is-storehouse ?other-mach)

(not (goal (machine-slot-full

?other-mach ?other-slot)))))

(tag-added-for ?other-mach ?other-slot)

(choose

(or (default)

(exists (?robot-slot)

(robot-slot-empty ?robot-slot)

(exists (?store) (robot-at ?store)

(and (check (is-storehouse ?store))

(part-for-slot-gotten ?other-mach

?other-slot ?store

?robot-slot))))))

(default))))))

Figure A.11: Rule for get-other-machine-parts

177

((install-one-part ?machine ?mach-slot)

(priority-over)

(and (robot-at ?machine)

(exists (?type)

(machine-part-slot-type ?machine ?mach-slot ?type)

(or (exists (?robot-slot) (robot-slot-full ?robot-slot ?type)

(and (achieve place-part-at ?machine ?type ?robot-slot

?mach-slot)

(del-from-state

(robot-part-tagged ?robot-slot ?machine

?mach-slot))))

(default)))))

Figure A.12: Rule for install-one-part

((install-all-parts ?machine)

(priority-over)

(and (robot-at ?machine)

(forall (?mach-slot) (machine-slot-empty ?machine ?mach-slot)

(install-one-part ?machine ?mach-slot))))

Figure A.13: Rule for install-all-parts

178

((part-for-slot-gotten ?machine ?slot ?store ?robot-slot)

(priority-over)

(exists (?type) (machine-part-slot-type ?machine ?slot ?type)

(exists (?store-slot)

(machine-part-slot-type ?store ?store-slot ?type)

(and (check (machine-slot-full ?store ?store-slot))

(robot-at ?store)

(achieve get-part-from ?store ?type ?robot-slot

?store-slot)

(add-to-state (robot-part-tagged ?robot-slot ?machine

?slot))))))

Figure A.14: Rule for part-for-slot-gotten

179

((tag-added-for ?machine ?slot)

(priority-over)

(exists (?type) (machine-part-slot-type ?machine ?slot ?type)

(exists (?robot-slot) (robot-slot-full ?robot-slot ?type)

(and (check

(not (exists (?other-mach) (is-machine ?other-mach)

(and (not (= ?other-mach ?machine))

(exists (?other-slot)

(robot-part-tagged ?robot-slot

?other-mach ?other-slot))))))

(or (check (robot-part-tagged ?robot-slot ?machine ?slot))

(and (check

(not (exists (?other-slot)

(machine-slot-empty ?machine

?other-slot)

(and (not (= ?other-slot ?slot))

(robot-part-tagged ?robot-slot

?machine ?other-slot)))))

(add-to-state (robot-part-tagged ?robot-slot

?machine ?slot))))))))

Figure A.15: Rule for tag-added-for

B

Maps, World States, and Failures

This appendix describes the maps used, the initial states for each of those maps, and

the failure sequences used with each map.

B.1 Map Layout

The geometric configuration of each map is given in the corresponding figure. In each

map, circles are machines and squares are storehouses. Figure B.1 shows the layout

of Map 1. The layout of machines and storehouses in Map 1 is a regular polygon.

Figure B.2 shows Map 2, and Figure B.3 shows Map 3. The coordinates of each

location in Map 2 and Map 3 were generated pseudo-randomly.

Experiments were performed using two versions of each map. In the first version,

each machine required two machine parts of type 1 and one part of type 2. Storehouse

11 contained 20 type 1 parts, storehouse 12 contained 10 type 2 parts, and storehouse

13 contained 10 type 1 parts and 5 type 2 parts. In all of the first version experiments,

the machines produced the following numbers of widgets per time step:

1. 2

180

B.1. Map Layout 181

Figure B.1: Map 1

B.1. Map Layout 182

Figure B.2: Map 2

B.1. Map Layout 183

Figure B.3: Map 3

B.1. Map Layout 184

2. 6

3. 10

4. 2

5. 6

6. 10

7. 2

8. 6

9. 10

10. 2

In the second version, each machine required six partsand there were three total

types of parts. Different machines had different part type requirements. Here are the

requirements for each machine/storehouse:

1. 4 type 1, 2 type 2

2. 2 type 1, 4 type 2

3. 1 type 1, 1 type 2, 4 type 3

4. 2 type 1, 4 type 3

5. 3 type 2, 3 type 3

6. 2 type 1, 1 type 2, 3 type 3

7. 2 type 1, 4 type 2

B.1. Map Layout 185

8. 2 type 1, 1 type 2, 3 type 3

9. 2 type 1, 3 type 2, 1 type 3

10. 2 type 1, 1 type 2, 3 type 3

11. 20 type 1, 12 type 3

12. 14 type 2, 12 type 3

13. 10 type 1, 7 type 2

In the second version, each machine produced the following number of widgets

per time step:

1. 6

2. 10

3. 2

4. 6

5. 10

6. 2

7. 6

8. 10

9. 2

10. 6

B.2. Initial States 186

B.2 Initial States

For each number of part types, there were two initial states from which original plans

were generated. The variation in initial state regarded what parts were lacking from

what machines. The storehouses were always completely full. Here are the initial

numbers of parts per machine, and whether the machine was functioning:

Seven machines broken, 2 part types:

1. 1 type 1, 1 type 2, not functioning

2. 2 type 1, 1 type 2, functioning

3. No parts, not functioning

4. 2 type 1, 1 type 2, functioning

5. No parts, not functioning

6. 2 type 1, 1 type 2, functioning

7. No parts, not functioning

8. 1 type 2, not functioning

9. 1 type 1, 1 type 2, not functioning

10. 1 type 1, not functioning

Seven machines broken, 3 part types:

1. 3 type 1, 2 type 2, not functioning

2. 2 type 1, 4 type 2, functioning

B.2. Initial States 187

3. 3 type 3, not functioning

4. 2 type 1, 4 type 3, functioning

5. 1 type 2, 2 type 3, not functioning

6. 2 type 1, 1 type 2, 3 type 3, functioning

7. 3 type 2, not functioning

8. 1 type 1, 1 type 2, 2 type 3, not functioning

9. 2 type 1, 3 type 2, not functioning

10. 1 type 1, 1 type 2, 2 type 3, not functioning

For these cases, no machines were functioning initially; just the number of working

parts of each type per machine is listed.

Ten machines broken, 2 part types:

1. 1 type 1, 1 type 2

2. 1 type 2

3. No functioning parts

4. 1 type 1

5. No functioning parts

6. No functioning parts

7. No functioning parts

8. 1 type 2

B.3. Failure Scripts 188

9. 1 type 1, 1 type 2

10. 1 type 1

Ten machines broken, 3 part types:

1. 1 type 1

2. 1 type 1

3. 1 type 3

4. No functioning parts

5. 1 type 2

6. 1 type 1

7. 2 type 2

8. 1 type 1, 1 type 2, 1 type 3

9. 1 type 2

10. 1 type 1, 1 type 2, 1 type 3

As each of the four initial machine configurations was applied to each of the three

maps, twelve total initial plans were created.

B.3 Failure Scripts

A failure script contains a list of failures that will occur as the plan is executed.

Each failure has two components. The first component indicates when the failure

B.3. Failure Scripts 189

occurs and the second component indicates what changes to the world state result

from the occurrence of the failure. The timing of the failure is specified in terms of

the occurrence of a particular operator. For example, a failure can happen before the

second time an activate-machine operator gets applied. The changes to the world

state are given in terms of add and delete lists. The predicates added and deleted

are specified in terms of parameters shared with the operator used to specify failure

timing. In my experiments, failures consisted of the destruction of parts in a machine

immediately before the robot attempts to use the activate-machine operator to

restart production.

Figure B.4 contains an example of how a failure sequence was specified. Each

Before clause indicates a failure to occur before the application of the specified oper-

ator. The number refers to the nth application of that operator since the last failure.

In this example, the first failure would be applied before the first machine activation

in the initial plan. The second failure would be before the third machine activation

in the plan generated in order to handle the first failure.

Each initial plan generated to fix seven machines was subjected to three distinct

failure sequences; each initial plan generated to fix all of the machines was subjected

to four. Each sequence was specified using a failure script similar to the one depicted

in Figure B.4. The sequences for the short initial plans were:

• 1, 2, 2

• 1, 3, 3

• 1, 4, 1

The sequences for the long initial plans were:

• 1, 2, 2, 2, 2

B.3. Failure Scripts 190

((Before 1 (activate-machine ?mach)

((add ((machine-slot-empty ?mach 0) (machine-slot-empty ?mach 1)

(not-machine-works ?mach)))

(del ((machine-slot-full ?mach 0) (machine-slot-full ?mach 1)

(machine-works ?mach)))))

(Before 3 (activate-machine ?mach)

((add ((machine-slot-empty ?mach 1) (machine-slot-empty ?mach 2)

(not-machine-works ?mach)))

(del ((machine-slot-full ?mach 1) (machine-slot-full ?mach 2)

(machine-works ?mach)))))

(Before 3 (activate-machine ?mach)

((add ((machine-slot-empty ?mach 2) (machine-slot-empty ?mach 0)

(not-machine-works ?mach)))

(del ((machine-slot-full ?mach 2) (machine-slot-full ?mach 0)

(machine-works ?mach))))))

Figure B.4: A Failure Script

B.3. Failure Scripts 191

• 1, 4, 4

• 1, 5, 3

• 1, 6

For each map, 17 different specific failure patterns were given for each failure

sequence. Seven of the patterns applied to machines with three parts each; the other

ten patterns applied to machines with six parts each. For each sequence, there were

six patterns in which one part failed per machine, six patterns with two parts failing,

four patterns with three parts failing, and one pattern with six parts failing.

Bibliography

[1] James Allen, James Hendler, and Austin Tate, editors. Readings in Planning.

Morgan Kaufman, 1990.

[2] Jose Luis Ambite and Craig A. Knoblock. Flexible and scalable cost-based

query planning in mediators: A transformational approach. Artificial Intelli-

gence, 118:115–161, 2000.

[3] Jose Luis Ambite and Craig A. Knoblock. Planning by rewriting. Journal of

Artificial Intelligence Research, 15:207–261, 2001.

[4] Jose Luis Ambite, Craig A. Knoblock, and Steven Minton. Learning plan rewrit-

ing rules. In Proceedings of the Fifth Artificial Intelligence and Planning Sym-

posium (AIPS-2000), Breckenridge, Colorado, 2000.

[5] Ronald C. Arkin and Tucker Balch. AuRA: Principles and practice in review.

Journal of Experimental and Theoretical Artificial Intelligence, 9(2), 1997.

[6] Fahiem Bacchus. Aips 2000 planning competition, 2000.

http://www.cs.toronto.edu/aips2000/.

[7] Fahiem Bacchus and Froduald Kabanza. Using temporal logic to control search in

a forward chaining planner. In M. Ghallab and A. Milani, editors, New Directions

in Planning. IOS Press, 1996.

192

Bibliography 193

[8] Christer Backstrom and Bernhard Nebel. Complexity results for SAS+ planning.

Computational Intelligence, 11(4), 1995.

[9] A. L. Blum and M Furst. Fast planning through planning graph analysis. Arti-

ficial Intelligence, 90:281–300, 1997.

[10] Jim Blythe and W. Scott Reilly. Integrating reactive and deliberative planning for

agents. Technical Report CMU-CS-93-155, Carnegie Mellon University, School

of Computer Science, May 1993.

[11] Mark Boddy and Thomas Dean. Solving time-dependent planning problems. In

Proceedings of IJCAI-1989, pages 979–984, 1989.

[12] Mark Boddy and Thomas L. Dean. Deliberation scheduling for problem solving

in time-constrainted environments. Artificial Intelligence, 67:245–285, 1994.

[13] R. Peter Bonasso, R. James Firby, Erann Gat, David Kortenkamp, David P.

Miller, and Marc G. Slack. Experiences with an architecture for intelligent,

reactive agents. Journal of Experimental and Theoretical Artificial Intelligence,

9(2), 1997.

[14] Will Briggs and Diane Cook. Anytime planning for optimal tradeoff between de-

liberative and reactive planning. In Proceedings of the 1999 Florida AI Research

Symposium (FLAIRS-99), 1999.

[15] Frank Z. Brill, Glenn S. Wasson, Gabriel J. Ferrer, and Worthy N. Martin. The

effective field of view paradigm: Adding representation to a reactive system.

Engineering Applications of Artificial Intelligence, 11:189–201, 1998.

[16] Rodney A. Brooks. A robost layered control system for a mobile robot. IEEE

Journal of Robotics and Automation, RA-2(1):14–23, March 1986.

Bibliography 194

[17] Tom Bylander. The computational complexity of propositional STRIPS plan-

ning. Artificial Intelligence, 69:165–204, 1994.

[18] David Chapman. Planning for conjuncitve goals. Artificial Intelligence, 32:333–

377, 1987.

[19] S. Chien, A. Barrett, T. Estlin, and G. Rabideau. A comparison of coordinated

planning methods for cooperating rovers. In Proceedings of the Fourth Interna-

tional Conference on Autonomous Agents (Agents 2000), Barcelona, Spain, June

2000.

[20] Steve Chien, Russell Knight, Andre Stechert, Rob Sherwood, and Gregg Ra-

bideau. Using iterative repair to improve the responsiveness of planning and

scheduling. In Proceedings of the 5th International Conference on Artificial In-

telligence Planning and Scheduling (AIPS 2000), Breckenridge, Colorado, April

2000.

[21] Ken Currie and Austin Tate. O-Plan: the open planning architecture. Artificial

Intelligence, 52:49–86, 1991.

[22] Thomas Dean, James Allen, and Yiannis Aloimonos. Artificial Intelligence: The-

ory and Practice. Addison-Wesley Publishing Company, 1995.

[23] Thomas Dean and Mark Boddy. An analysis of time-dependent planning. In

Proceedings of AAAI-1988, pages 49–54, 1988.

[24] Thomas Dean, Leslie Pack Kaelbling, Jak Kirman, and Ann Nicholson. Planning

under time constraints in stochastic domains. Artificial Intelligence, 76(1-2):35–

74, 1995.

Bibliography 195

[25] Marie E. desJardins, Edmund H. Durfee, Jr. Charles L. Ortiz, and Michael J.

Wolverton. A survey of research in distributed, continual planning. AI Magazine,

21(4), Winter 2000.

[26] P. Doherty, J. Gustafsson, L. Karlsson, and J. Kvarnstrom. (TAL) Temporal

Action Logics: Language specification and tutorial. Electronic Transactions on

Artificial Intelligence, 2(3-4):273–306, 1998.

[27] Brian Drabble, Jeff Dalton, and Austin Tate. Repairing plans on-the-fly. In Pro-

ceedings of the NASA Workshop on Planning and Scheduling for Space, Oxnard,

California, USA, October 1997.

[28] Mark Drummond and John Bresina. Anytime synthetic projection: Maximizing

the probability of goal satisfaction. In Proceedings of AAAI-90, July-August

1990.

[29] Mark Drummond, John Bresina, and Keith Swanson. Just-in-case scheduling.

In Proceedings of AAAI-1994, Seattle, WA, 1994.

[30] Charles Elkan. Incremental, approximate planning. In Proceedings of the Na-

tional Conference on Artificial Intelligence (AAAI-1990), pages 145–150, 1990.

[31] Chris Elsaesser and Richard MacMillan. Representation and algorithms for mul-

tiagent adversarial planning. Technical Report MTR-91W000207, The MITRE

Corporation, December 1991.

[32] Kutluhan Erol, James Hendler, and Dana S. Nau. HTN planning: Complexity

and expressivity. In Proceedings of AAAI-94, July 1994.

Bibliography 196

[33] Kutluhan Erol, Dana S. Nau, and V. S. Subrahmanian. Complexity, decid-

ability, and undecidability results for domain-independent planning. Artificial

Intelligence, 76:75–88, 1995.

[34] Richard E. Fikes and Nils J. Nilsson. STRIPS: A new approach to the ap-

plication of theorem proving to problem solving. In Proceedings of the Second

International Joint Conference on Artificial Intelligence, pages 189–208, Imperial

College, London, England, September 1971.

[35] R. J. Firby, P. Prokopowicz, and M. Swain. Plan representations for picking

up trash. In Proc. of the Int. Joint Conf. on Artificial Intelligence, Montreal,

Canada, 1995.

[36] Naresh Gupta and Dana S. Nau. On the complexity of blocks-world planning.

Artificial Intelligence, 56(2-3):223–254, August 1992.

[37] Peter Haddawy. Focusing attention in anytime decision-theoretic planning.

SIGART Bulletin, 7(2), Summer 1996.

[38] Karen Zita Haigh and Manuela M. Veloso. High-level planning and low-level

execution: Towards a complete robotic agent. In Proceedings of the First Inter-

national Conference on Autonomous Agents, pages 363–370, February 1997.

[39] Jorg Hoffmann. Local search topology in planning benchmarks: An empirical

analysis. In Proceedings of the Seventeenth International Joint Conference on

Artificial Intelligence, Seattle, Washington, August 2001.

[40] Jorg Hoffmann and Bernhard Nebel. The FF planning system: Fast plan genera-

tion through heuristic search. Journal of Artificial Intelligence Research, 14:253–

302, May 2001.

Bibliography 197

[41] Ian Horswill. Polly: A vision-based artificial agent. In Proceedings of the Eleventh

National Conference on Artificial Intelligence, 1993.

[42] Henry Kautz and Bart Selman. Unifying SAT-based and graph-based planning.

In Proceedings of the Sixteenth International Joint Conference on Artificial In-

telligence, pages 318–325, Stockholm, Sweden, July/August 1999.

[43] Richard E. Korf. Planning as search: A quantitative approach. Artificial Intel-

ligence, 33:65–88, 1987.

[44] Jonas Kvarnstrom, Patrick Doherty, and Patrik Haslum. Extending TALplanner

with concurrency and resources. In ECAI 2000. Proceedings of the 14th European

Conference on Artificial Intelligence, Amsterdam, 2000.

[45] J. E. Laird and P. S. Rosenbloom. Integrating execution, planning, and learn-

ing in soar for external environments. In Proceedings of the Eighth National

Conference on Artificial Intelligence, pages 1022–1029, 1990.

[46] Drew McDermott. Aips 1998 planning competition, 1998.

ftp://ftp.cs.yale.edu/pub/mcdermott/aipscomp-results.html.

[47] Dana Nau, Yue Cao, Amnon Lotem, and Hector Munoz-Avila. SHOP: Sim-

ple Hierarchical Ordered Planner. In Proceedings of the 16th International

Joint Conference on Artificial Intelligence, pages 968–973, Stockholm, Sweden,

July/August 1999.

[48] Dana Nau, Hector Munoz-Avila, Yue Cau, Amnon Lotem, and Steven Mitchell.

Total-order planning with partially ordered subtasks. In Proceedings of the 17th

International Joint Conference on Artificial Intelligence, Seattle, Washington,

August 2001.

Bibliography 198

[49] Bernhard Nebel and Jana Koehler. Plan reuse versus plan generation: A theo-

retical and empirical analysis. Artificial Intelligence, 76:427–454, 1995.

[50] E. P. D. Pednault. ADL: Exploring the middle ground between STRIPS and

the situation calculus. In Proceedings of the First Conference on Principles

of Knowledge Representation and Reasoning (KR 89), pages 324–332. Morgan

Kaufman Publisher Inc., 1989.

[51] Gregg Rabideau, Russell Knight, Steve Chien, Alex Fukunaga, and Anita Govin-

djee. Iterative repair planning for spacecraft operations using the aspen system.

In Proceedings of the International Symposium on Artificial Intelligence Robotics

and Automation in Space (ISAIRAS), Noordwijk, The Netherlands, June 1999.

[52] Daniel Ratner and Ira Pohl. Joint and LPA*: Combination of approximation and

search. In Proceedings of the Fifth National Conference on Artificial Intelligence

(AAAI-1986), pages 173–177, 1986.

[53] Paul S. Rosenbloom, John E. Laird, and Allen Newell, editors. The Soar Papers:

Research on Integrated Intelligence. MIT Press, 1993.

[54] Earl D. Sacerdoti. Planning in a hierarchy of abstraction spaces. Artificial

Intelligence, 5:115–135, 1974.

[55] Earl D. Sacerdoti. The nonlinear nature of plans. In Proceedings of the Fourth

International Joint Conference on Artificial Intelligence, pages 206–214, 1975.

[56] S.J. Smith, Dana Nau, and T. Throop. Computer bridge: A big win for AI

planning. AI Magazine, 19(2):93–105, 1998.

[57] Austin Tate. Generating project networks. In Proceedings of the Fifth Interna-

tional Joint Conference on Artificial Intelligence, pages 888–893, 1977.

Bibliography 199

[58] Austin Tate, James Hendler, and Mark Drummond. A review of AI planning

techniques. In James Allen, James Hendler, and Austin Tate, editors, Readings

in Planning, pages 26–49, 1990.

[59] Manuela Veloso, Jaime Corbonell, Alicia Perez, Daniel Borrajo, Eugene Fink,

and Jim Blythe. Integrating planning and learning: The PRODIGY architecture.

Journal of Experimental and Theoretical Artificial Intelligence, 7(1), 1995.

[60] David E. Wilkins. Can AI planners solve practical problems? Computational

Intelligence, 6(4):232–246, 1990.

[61] David E. Wilkins, Karen L. Myers, John D. Lowrance, and Leonard P. Wes-

ley. Planning and reacting in uncertain and dynamic environments. Journal of

Experimental and Theoretical Artificial Intelligence, 7(1):197–227, 1995.

[62] Qiang Yang, Dana S. Nau, and James Hendler. Merging separately generated

plans with restricted interactions. Computational Intelligence, 8(2):648–676,

February 1992.

[63] Shlomo Zilberstein and Stuart J. Russell. Anytime sensing, planning and action:

A practical model for robot control. In Proceedings of IJCAI-1993, pages 1402–

1407, 1993.

[64] Shlomo Zilberstein and Stuart J. Russell. Optimal composition of real-time

systems. Artificial Intelligence, 82(1-2):181–213, 1996.

