A Linear Time Transform for Probability Aware Planning

J. P. Gunderson, G. J. Ferrer
University of Virginia
Charlottesville, VA, 22903

Abstract

We present a transform that enables traditional
Shortest-Feasible-Plan planners to reason about un-
certain operators and produce plans which have higher
probabilities of success. This transform converts a
probability-aware domain description into a STRIPS-
style description, where the probability of success is
expressed by plan length. Using this transformed de-
scription a plan can be generated by a traditional plan-
ner. The transform is shown to be at worst linear in
the size of the input, and allows the planning system
to trade-off accuracy against runtime as an anytime
computation.

1 Introduction

Beginning with General Problem Solvers[17], and the
STRIPS[8] planning system, traditional planners have
defined an optimal plan as the shortest plan which
achieves the goal. Such planning systems assumed
that the correct operators, applied in the correct or-
der, would always achieve the goal.

Unfortunately, in the real world, operators fail. As a
result, the ‘best’ plan may not be the shortest, since
a longer plan may have a higher probability of suc-
cess, and the impacts of even low levels of uncertainty
can significantly affect plan success[11]. In addition,
when an operator fails, there may be many differ-
ent possible results, each with its own likelihood of
occurrence. Many different approaches to handling
this uncertainty have been taken (see section 1.1 be-
low), ranging from planners which require complete
knowledge of all the possible outcomes and the atten-
dant probability distributions, to traditional planners
which have no way to represent, or reason about, op-
erator failure.

Recent work has suggested that humans solve complex
problems not by exhaustively modeling the probabil-
ities of every possible result, but by applying simple
rules which capture broad sets of likelihoods[9]. In

this paper we evaluate a simple planner that has ba-
sic knowledge of the likelihood of success of an action,
and the goal of finding the plan that is most likely to
succeed. Such a probability-aware planner has sev-
eral possible benefits: since it is only finding one plan,
it avoids the computational complexity of conditional
and probabilistic planners; since it has no information
about the possible outcomes of operator failure, the
domain knowledge needed to use the planner is re-
duced; and since it has knowledge of the likelihood of
failure, it can make trade-offs between plan length and
success. Probability aware planners are designed to be
part of an interleaved planning/execution system[7],
where, upon operator failure, a new planning problem
will be instantiated from the resulting world state.

Our purpose is to develop a methodology to allow tra-
ditional planners to be aware of uncertainty by pro-
viding a transformation from a probability aware do-
main description to a STRIPS-style description. We
can then leverage off the extensive work which has
been done to improve the speed and efficiency of tra-
ditional planners such as SatPlan [13], Graphplan[1],
and others.

To be effective, there are several constraints on any
such transformation:

1. It must preserve the ability to produce the plan
with the highest probability of success.

2. It must not increase the size of the input to the
planner by more than a linear amount, or already
computationally intense solutions may become in-
tractable.

3. The overhead of the transformation must not
overwhelm the planning process.

1.1 Previous Work

A large body of work exists on the subject of plan-
ning under uncertainty. Many traditional planners
have been extended to handle degrees of uncertainty in
the domains, including Buridan[14], C-Buridan]6],

Graphplan extensions[2], as well as development of
MDP based planners[4], and other planners based on
decision theory[12].

Much of this work focuses on representing two fea-
tures of operating in an uncertain world: 1) oper-
ators have a probability of failure, and 2) the out-
come of that failure. The second of these seems to be
the most problematic. Research has suggested that
it may be impossible to capture an exhaustive and
mutually exclusive set of failure modes for any but
the simplest operators[5], and even representing a rea-
sonable, though non-exhaustive, set can lead to in-
tractable problem descriptions.

Theoretic work on the complexity of planning under
uncertainty has been done by Bylander[3], Littman,
Goldsmith and Mundhenk[10, 15], and Pearl[18]. In
addition, a recent article by Nebel[16] suggests that
the introduction of conditional effects into STRIPS-
style description significantly increases the complexity
of the planning process.

2 Method

We have developed a domain transformation that al-
lows traditional planners to reason about the likeli-
hood of plan success, by encoding the likelihood of
plan success into the length of the plan. We assume
that the operators can be represented as conditionally
independent steps, all of which must succeed if the
plan is to succeed. Thus, the probability of a plan
succeeding is:

P (Successpian) = H P (Successstep)

allsteps

While this requires the product of the probabilities,
traditional planners minimize the sum of the steps in
the plan. However, we can accommodate this by using
a log transform as follows

P (Successpian) = €xp Z In P (Successstep)

allsteps

We transform the probability of an operator succeed-
ing into additional plan steps. These additional steps
must be invoked to apply the operator. The higher the
operator’s probability of success, the fewer the addi-
tional steps added. Thus, the shortest feasible plan is
also the plan with the highest probability of success.

However, the current transform is insufficient, since it
produces real valued results which are less than zero,

and we need positive, integer values to be encoded as
discrete plan steps. To achieve this final state, we use
a probability quantum to discretize the number of ad-
ditional steps to add to the operator. This probability
quantum is a value in the range (0.0, 1.0) which is used
to determine the bin size of the probability steps, and
to produce a positive number of additional plan steps.
Thus the number of additional steps for any operator
is:

(P (Operator))
—Quantum

1
Steps = | 1 |
The quantum has the following impact on the planning
process:

e The smaller the quantum, the less error intro-
duced by the floor function,

e The smaller the quantum, the more additional
steps for any given probability.

e The smaller the quantum, the longer the runtime
of the planner.

The result of these impacts is that the quantum be-
comes a mechanism for the planning system to trade
off the optimality of the plan with the run time of the
planning system.

2.1 A quick example

To demonstrate these impacts, suppose our domain
were blocks world, and we wished to stack block
A on block B. The two operators needed might be
Pickup A, and Stack A B. Suppose that these oper-
ators had the following probabilities of succeeding:
P (Pickup) = 0.8, and P (Stack) = 0.6 (e.g., the
Stack operator will fail 4 times out of 10).

To achieve our goal, we must successfully execute both
the operations, and so, recalling our conditional inde-
pendence assumption, the probability of goal satisfac-
tion is 0.8%0.6 = 0.48. When we apply the probability-
aware planning transformation, we also need to select
an appropriate Probability Quantum.

Following the steps of the transformation with a Quan-
tum of 0.1, we see that the Stack operator

1n(0.6)J

~0.1

—0.5108

1 -
=

= 1+ [5.108
6

Stacksteps = 14|

]

| Quantum | Pickup | Stack | P (Plan)]

0.5 1 2 0.22
0.2 2 3 0.36
0.1 3 6 0.4065
0.05) 11 0.4493
0.02 12 26 0.4670
0.01 23 52 0.4723

Table 1: Growth of Plan Size, and increase in accuracy
with changes in Probability Quantum

expands into 6 steps, where the higher probability op-
erator Pickup only expanded into 3 steps. The result-
ing plan has a length of 9 steps, which corresponds to
a probability of success of:

P (Plan) = exp (9 * —0.1) = 0.4065

This probability of success differs from the true proba-
bility of success due to the inaccuracies introduced by
the discretization process. As the magnitude of the
Probability Quantum decreases, these errors should
also decrease, however, this increased accuracy comes
at the price of longer and longer plans (see Table 1).

3 Transform Methodology

The transform is implemented as a preprocessor and
postprocessor, which can be used with any planner
that accepts STRIPS-style input. The preprocessor
reads the domain description (current world state, de-
sired world state, and operators), and additional infor-
mation which specifies the probability quantum, and
operator probabilities. From this a new domain de-
scription is created.

In this description each of the original operators is di-
vided into two operators; one has the original precon-
ditions, and the second has the add and delete lists.
These are modified to force the planner to include a
chain of dummy operators which change the length of
the combined operator chain to be the required num-
ber of steps (See Figure 1). The precondition portion
now has an effect of setting PSTATE3 — the precondi-
tion for the @QP@3 operator. The Add/Delete portion
of the original operator is modified to have PSTATEQ
as a precondition. Thus, if the planner needs the origi-
nal operator’s effects, it must backward chain through
the added operators to reach the preoperator, and
then satisfy the original preconditions.

Pre-cond
@P@2
i
@P@1
Add/delete

Figure 1: The transformed operator chain, with length
increased to reflect operator probability

3.1 Change in input size

While this simple example suggests that each operator
must include its own sequence of dummy steps, we also
include a flag variable which allows all probabilistic
operators to share a single chain. Thus the plan size
increases by a constant amount which is determined by
the operator with the lowest success probability and
the Probability Quantum. Since this is independent
of the input size, it acts as a constant.

However, each probabilistic operator is replaced with
two operators, the preoperator and the postoperator.
Hence the input size grows linearly with respect to the
plan size. In addition, note that in the case where the
probability of operator success is sufficiently high, the
floor function causes no additional steps to be added.
In this case there is no need to split the original oper-
ator into pre and post phases, and the overall size of
the input grows sub-linearly.

4 Experiments

The experimental setup uses a variant of the Prob-
abilistic Blocks World domain proposed by Blum
and Langford[2]. In this domain there are the tra-
ditional Pickup and Stack operators, and a set
of faststack operators which combine Pickup and
Stack into a single step. These faststack operators
provide the ability to add a block to towers of vari-
ous heights: faststackl puts a block onto a single
block, faststack2 adds a new block onto a tower of

Operator | Probability of Success
pickup 0.88
putdown | 1.0
faststack3 | 0.71
faststack2 | 0.81
faststackl | 0.94
stack 0.88
unstack | 1.0

Table 2: Operator Success Probabilities

two blocks, and faststack3 adds a new block onto a
tower of more than 2 blocks. Their success probabili-
ties are ordered:

P (faststack3) < P (faststack2) < P (faststackl)

We ran a series of experiments to determine the per-
formance of the Probability-Aware planning system.
The experiment fell into three categories:

1. Shortest feasible plan,
2. Effect of problem size on performance, and

3. Effect of quantum value on performance.

In each case, the Blocks World domain description,
augmented with operator probabilities and a Proba-
bility Quantum, was preprocessed and the output was
passed to Graphplan. The probabilities used for the
operators are in Table 2. The output from Graphplan
was then postprocessed to result in a feasible plan.

The first set of experiments did no probability aware
planning at all. Graphplan returned the shortest feasi-
ble plan. This data provides a baseline for comparing
the probabilistic runs. We used six blocks world prob-
lems ranging in size from 2 to 7 blocks.

To empirically verify the effect of problem size on per-
formance we ran a series of experiments with a fixed
quantum of 0.04 to generate probabilistic plans for the
same six blocks world problems.

Our third set of experiments used just the 7 blocks
problem and varied the quantum values from 0.02 to
0.10.

5 Results

One critical issue was the overhead of performing
the transformation to the domain descriptions. Typi-

Plan Success[]

13
0.9 .

0.8
0.7 \.\

0.6!

\:\\ _m— P-Aware|
05 -—
~— —e— Shortest|

0.4

0.2 \\

0.1

P(Success)l

20 30 40 50 60 70
BlocksO

Figure 2: Probability of plan success for shortest-
feasible planner and Probability-Aware planner

cally, the planning time overshadows any preprocess-
ing time, and we found this to be the case. Attempts
to time the transform resulted in time values of 0.0
seconds, for all experiments. We concluded that our
transform does not add significant overhead to the
planning system.

The probability-aware plans started out by unstack-
ing everything, but then exhibited a curious behavior.
When placing a block atop a stack too tall to use any-
thing except faststack3 or the pickup/stack com-
bination, they would faststackl a block onto some
arbitrary block, use the perfect success unstack oper-
ator to grab the block, and then stack the block atop
the stack. The faststackl/unstack/stack combina-
tion has a higher probability than either faststack3
or the pickup/stack combination, so this action se-
quence makes perfect sense, but we did not antic-
ipate it. When no solitary blocks remained, the
pickup/stack combination was used.

5.1 Probability of Success

As expected, the probability of success for all of the
probability-aware plans exceeded that of the shortest
feasible plans (See Figure 2) in all cases except the
two and three block problems, where the probabilities
were equal. Also as expected, the plan lengths for the
probability-aware plans were greater, or equal to, the
shortest feasible plans. In addition, a comparison of
the number of lines of domain description needed to
capture the additional information shows sub-linear
growth (See Figure 3) as the number of blocks in-
creases. This is due, in part, to the fact that some
of the operators did not require expansion into pre

Ratio of Lines of Input O
Probability Aware lines / Shortest Plan lines

2503

20 P S—

\\\

1.5(

10

Input Size RatiolJ

0.5

ol

20 30 40 50 60 70
Number of BlocksO

Figure 3: Ratio of lines of input for probability-aware
planner and shortest path planner with quantum =
0.04

and post states. The rest is due to the fact that part
of the size increase is cause by the need to add the
chain of dummy operators, which is a constant at any
selected quantum.

5.2 Runtime

The run times of the quantum variation experiments
show a clear exponential increase in run time as the
quantum value decreases (See Figure 4).

The variable-quantum experiments demonstrated the
sensitivity of the Probability-Aware planner to varia-
tions in this number. Quantum values 0.02, 0.03, 0.04,
0.07, and 0.08 all resulted in the same plan, which was
the highest probability plan of the set. Likewise, quan-
tum values 0.09 and 0.10 resulted in another plan, this
being the second highest probability plan. Quantum
value 0.05 resulted in a plan noticeably worse than ei-
ther of these, and quantum value 0.06 resulted in the
lowest probability plan of all. In general the smaller
the quantum, the higher the probability of plan suc-
cess. However, the mapping is not monotonic, due the
the approximation effects of the dicretization.

Shifting the quantum values results in the various op-
erators and combinations of operators falling in differ-
ent "bins” when the probability space gets quantized.
In the case of quantum value 0.06, six total operators
are required to execute a faststackl, five dummy
operators plus the actual operator. Three total opera-
tors are required to execute each of pickup and stack,
two dummy operators plus the actual operator. The
result is that for quantum 0.06, faststackl and the
pickup/stack combination are considered probability

Probability-Aware Planner Runtime [0
as a function of Quantum SizelJ

4504
4005
3505 /

3001
2504

2004

1504 /‘/

100l
501 /
03 T T T T T T T T 1
0.10 0.090 0.080 0.070 0.060 0.050 0.040 0.030 0.020
QuantumO

runtime (sec)0

Figure 4: Exponential growth of runtime as a function
of quantum size.

equivalent, even though faststackl has a probabil-
ity of 0.6 and the pickup/stack combination is about
0.72. Hence, the 0.06 plan uses both in its plan when it
should have stuck exclusively with the pickup/stack
combination.

6 Summary and Conclusions

We have developed a domain transformation, which
allows traditional planners to reason about the likeli-
hood of plan success, by representing the likelihood of
plan failure as the length of the plan. This transfor-
mation begins with a traditional STRIPS-style repre-
sentation of the domain, and additional information
about the probability of operator failure. It produces
a new domain description, in the same representation.
Since any traditional STRIPS-style planner can use
the new domain to reason about the effects of op-
erator uncertainty on plan success, many previously
intractable planning domains are now accessible.

We have demonstrated that this transform meets three
critical requirements:

1. A Shortest-Feasible-Plan planner produces plans
with the highest probability of success,

2. The transform increases the input size at worst
linearly, and

3. The overhead of the transform in negligible.

In addition, we have shown that traditional planners
can be used for a form of anytime planning, by starting
with large quantum values and planning using pro-
gressively smaller values as time permits. Since the

transform allows the tradeoff of accuracy in the plan
certainty for improved run-time, this transformation
supports ”anytime planning” in uncertain domains.

Acknowledgments

The authors would like to acknowledge the Medical
Automation Research Center at the University of Vir-
ginia, and the ARCS foundation, for providing funding
for parts of this research.

References

[1] A. L. Blum and M Furst. Fast planning through
planning graph analysis. Artificial Intelligence,
90:281-300, 1997.

[2] A. L. Blum and J. C. Langford. Probabilistic
planning in the graphplan framework. In Proceed-
ings of the Fifth European Conference on Plan-
ning, Durham, United Kingdom, 1999.

[3] T. Bylander. The computational complexity of
propositional strips planning. Artificial Intelli-
gence, 69:165-204, 1994.

[4] T. Dean, L. P. Kaelbling, J. Kirman, and
A. Nicholson. Planning under time constraints in
stochastic domains. Artificial Intelligence, 76(1-
2):35-74, jul 1995.

[5] R. Dearden and C. Boutilier. Abstraction and ap-
proximate decision-theoretic planning. Artificial
Intelligence, 89:219-283, 1997.

[6] D. Draper, S. Hanks, and D. Weld. Probabilis-
tic planning with information gathering and con-
tingent execution. In International Conference
on Artificial Intelligence Planning and Schedul-
ing, 1994.

[7] G. J. Ferrer, G. S. Wasson, and W. N. Mar-
tin. Constraining planning episodes in an in-
terleaved architecture. In Integrated Planning
for Autonomous Agent Architectures. AAAI Fall
Symposium Series, 1998.

[8] R. E. Fikes and N. J. Nilsson. Strips: A new
approach to the application of theorem proving
to problem solving. Artificial Intelligence, 2:189—
208, 1971.

[9] G. Gigerenzer, P. M. Todd, and the ABC Re-
search Group. Simple Heuristics that Make Us
Smart. Oxford University Press, 1999.

[10] J. Goldsmith, M. L. Littman, and M. Mundhenk.
The complexity of plan existence and evaluation
in probabilistic domains. In Proceedings of the
Thirteenth Annual Conference on Uncertainty in
Artificial Intelligence (UAI-97), pages 182-189,
1997.

[11] J. P. Gunderson. Effects of uncertainty on vari-
able autonomy in maintenance robots. In Work-
shop on Autonomy control software. Autonomous
Agents ’99, 1999.

[12] P. Haddawy and S. Hanks. Representations for
decision-theoretic planning: Utility functions for
deadline goals. In Proceedings of the Third Inter-
national Conference of Principles of Knowledge
Representation and Reasoning, pages 71-82. Mor-
gan Kaufman, 1992.

[13] H. Kautz and B. Selman. Pushing the enve-
lope: Planning, propositional logic, and stochas-
tic search. In Proceedings of the Thirteenth
National Conference on Artificial Intelligence
(AAAI-96), Portland, OR, USA, 1996.

[14] N. Kushmerick, S. Hanks, and D. S. Weld. An
algorithm for probabalistic planning. Artificial
Intelligence, 76(1-2):239-286, Jul 1995.

[15] M. L. Littman, J. Goldsmith, and M. Mundhenk.
The computational complexity of probabalistic
planning. Journal of Artificial Intelligence Re-
search, 9:1-36, 1998.

[16] B. Nebel. On the compilability and ex-
pressive power of propositional planning for-
malisms. Journal of Artificial Intelligence Re-
search, 12:271-315, 2000.

[17] A. Newell and H. Simon. Gps, a program that
simulates human thought. In E. A. Feigenbaum
and J. Feldman, editors, Computers and Thought.
R. Oldenbourg KG., 1963.

[18] J. Pearl. Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference. Mor-
gan Kaufman, San Mateo, CA, 1988.

